Liverpool John Moores University

Title: COMPUTER AIDED DESIGN AND MANUFACTURE

Status: Definitive

Code: **5501ENGSBC** (113899)

Version Start Date: 01-08-2018

Owning School/Faculty: Electronics and Electrical Engineering

Teaching School/Faculty: The Sino-British College

Team	Leader
Jamie Finlay	Υ

Academic Credit Total

Level: FHEQ5 Value: 12 Delivered 44

Hours:

Total Private

Learning 120 Study: 76

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	10	
Practical	24	
Tutorial	10	

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Report	AS1	Coursework 1 - Design Report	30	
Report	AS2	Coursework 2 – Design for Manufacture	20	
Report	AS3	Coursework 3 – Manufacture Proving	30	
Report	AS4	Coursework 4 – Computer Assisted Manufacture	20	

Aims

The aim of this module is to give students an opportunity to experience the process of carrying out a design to manufacture project. It integrates the two subject areas of

computer-aided design and computer-aided manufacture (CAD/CAM).

Learning Outcomes

After completing the module the student should be able to:

- undertake a systematic design procedure to progress a design from the brief to a solution.
- 2 appraise a design solution and prepare for its manufacture.
- 3 use CAD/CAM systems during the design process and to prove manufacture.
- 4 produce components with the aid of computer assisted manufacture, to specification using safe working practices.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Design Report 1

Design for Manufacture 2

Manufacture Proving 3

Computer Assisted

Manufacture

4

Outline Syllabus

Design process: Design brief; specification; conceptual design and embodiment design.

Design for economic manufacture, assembly and inspection. Applying tolerances and dimensions.

3D CAD modelling; rapid prototyping; CAD/CAM data transfer; computer assisted part programming; cutter path simulation; computer aided machining and inspection.

Learning Activities

A practical, hands-on approach to learning is adopted. Case studies of examples of the theory in practice will be provided. Tutorial sessions will be used to focus upon the theoretical aspects of the module.

Notes

The module provides an integrative set of activities that cross traditional subject boundaries