

# **Advanced Mathematics**

# **Module Information**

2022.01, Approved

## **Summary Information**

| Module Code         | 5503ICBTCE                              |
|---------------------|-----------------------------------------|
| Formal Module Title | Advanced Mathematics                    |
| Owning School       | Civil Engineering and Built Environment |
| Career              | Undergraduate                           |
| Credits             | 15                                      |
| Academic level      | FHEQ Level 5                            |
| Grading Schema      | 40                                      |

#### Teaching Responsibility

| LJMU Schools involved in Delivery |
|-----------------------------------|
| LJMU Partner Taught               |
|                                   |

#### Partner Teaching Institution

| Institution Name                                 |  |
|--------------------------------------------------|--|
| International College of Business and Technology |  |

## **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 30    |
| Tutorial             | 15    |

### Module Offering(s)

| Display Name | Location | Start Month | Duration Number Duration Unit |
|--------------|----------|-------------|-------------------------------|
| APR-PAR      | PAR      | April       | 12 Weeks                      |
| JAN-PAR      | PAR      | January     | 12 Weeks                      |

| SEP-PAR | PAR | September | 12 Weeks |
|---------|-----|-----------|----------|
|---------|-----|-----------|----------|

### Aims and Outcomes

| Aims | To develop skills in advanced engineering mathematics for application to the solution of Civil<br>and Building Services Engineering problems. |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|

### After completing the module the student should be able to:

### Learning Outcomes

| Code | Number | Description                                                                      |
|------|--------|----------------------------------------------------------------------------------|
| MLO1 | 1      | Use number systems to model & solve engineering problems                         |
| MLO2 | 2      | Apply graphical and numerical methods to model and solve engineering problems    |
| MLO3 | 3      | Apply vector geometry and matrix methods to model and solve engineering problems |
| MLO4 | 4      | Use ordinary differential equations to model and solve engineering problems      |

## **Module Content**

| Outline Syllabus | Error arithmetic: significant figures and estimation techniques, error arithmetic operations, systematic and random errors, application to experimentation and general laboratory workNumber systems: natural, integer, rational, reals, dinary, binary, octal and hexadecimal number systems. Complex numbers: real and imaginary parts of complex numbers, complex number notation. Cartesian and polar forms, Argand diagrams, powers and roots and the use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | integral of functions using mid-ordinate, trapezoidal and Simpson's rulesNumerical estimation methods: method of bisection, Newton-Raphson iteration method, estimates of scientific functionsVector notation and operations: Cartesian co-ordinates and unit vectors, types of vector and vector representation, addition and subtraction, multiplication by a scalar, graphical methodsMatrix operations and vectors: carry out a range of matrix operations, e.g. vectors in matrix form, square and rectangular matrices, row and column vectors, significance of the determinant, determinant for 2x2 matrix, the inverse of a 2x2 matrix, Gaussian elimination to solve systems of linear equations (up to 3x3), Vector geometry: determine scalar product, vector product, angle between two vectors, equation of a line, norm of a vector, dot and cross productsFirst order differential equations: engineering use, separation of variables, integrating factor method, complementary function and particular integralNumerical methods for first order differential equations: need for numerical solution, Euler's method, improved Euler method, Taylor series methodApplication of second order differential equations: Engineering situations: applications, e mechanical systems, fluid systems, etc.Finite Difference and finite element methods |
| Module Overview  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Additional Information

### Assessments

| Assignment Category | Assessment Name     | Weight | Exam/Test Length (hours) | Module Learning<br>Outcome Mapping |
|---------------------|---------------------|--------|--------------------------|------------------------------------|
| Report              | Coursework          | 30     | 0                        | MLO2                               |
| Exam                | Written Examination | 70     | 2                        | MLO1, MLO3,<br>MLO4                |

## **Module Contacts**

### Module Leader

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
| Karl Jones   | Yes                      | N/A       |

#### Partner Module Team

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
|              |                          |           |