Liverpool John Moores University

Title: Manufacturing Technology

Status: Definitive

Code: **5508ENGRIV** (117214)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Russell English	Υ

Academic Credit Total

Level: FHEQ5 Value: 20 Delivered 50

Hours:

Total Private

Learning 200 Study: 150

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	36	
Practical	4	
Tutorial	8	

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Exam	Exam		60	2
Report	Report 1		20	
Report	Report 2		20	

Aims

To provide an introduction to manufacturing technologies and to give an understanding and practical experience of the techniques used in modern manufacturing industries.

Learning Outcomes

After completing the module the student should be able to:

- 1 Compare and contrast the characteristics of a range of manufacturing methods for metallic, plastic and composite materials
- 2 Select suitable processes and techniques for generating geometrical forms for a given component specification.
- Assess how different features on a component can be measured and their conformity to dimensional and geometric tolerances checked.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam 1 2 3

Lab-based assignment 1 2

Lab-based assignment 2 3

Outline Syllabus

Introduction to casting processes: fluid flow and solidification. Mould design.

Prevention of casting defects. Developments in casting processes.

Bulk deformation processes: forging, rolling, extrusion, drawing.

Sheet metal working processes: shearing, bending, punching

Design differences between conventional and CNC machine tools, classification of CNC machine tools, economic benefits of CNC

Modern developments in metal cutting processes: grinding theory and practice, high speed machining, hard turning.

Machine tool control: practical aspects of control

Application of adaptive control to machining processes

Introduction to non-conventional machining

Learning Activities

Combination of lectures, tutorials, and laboratory work

Notes

This module allows the student to study modern manufacturing processes to a depth which provides an understanding of the techniques employed in the manufacturing industries.