Liverpool John Moores University

Title: Mechatronics Status: Definitive

Code: **5508USST** (126440)

Version Start Date: 01-08-2021

Owning School/Faculty: Engineering

Teaching School/Faculty: University of Shanghai For Science and Technology

Team	Leader
Frederic Bezombes	Υ

Academic Credit Total

Level: FHEQ5 Value: 20 Delivered 44

Hours:

Total Private

Learning 200 Study: 156

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Practical	33	
Tutorial	11	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Practice	AS1	Practical - lab based exercises	100	

Aims

To develop a practical understanding of how sensors and actuators may be used, along with embedded systems, to control and monitor mechanical engineering systems.

Learning Outcomes

After completing the module the student should be able to:

- 1 Propose appropriate sensors for an application and analyse their characteristics, and practical interfacing requirements
- 2 Propose appropriate actuators for an application and analyse their characteristics, and drive requirements
- Design an appropriate control system structure for an engineering application and determine the characteristic dynamic response of a system.
- 4 Critically appraise a range of hardware interfaces and their methods of programming.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Practical assessments in 1 2 3 4 a lab

Outline Syllabus

The list below provides an overview of topics which may be covered in this module:

Sensors

- Measured Physical Quantity
 - o Temperature
 - o Position, Displacement and Velocity
 - o Acceleration
 - o Pressure & Force
 - o Fluid Flow Rates
- Signal Type
 - o Analogue
 - o Digital
- Characteristics
 - o Range & Span
 - o Sensitivity
 - o Precision, Accuracy, Repeatability

Actuators and Indicators

- Electro-mechanical Actuators
 - o Motors
 - o Solenoids
- Indicators and Displays
 - o LED Lights
 - o LED Displays

Embedded Systems Hardware

- Micro-controllers
- Characteristics of I/O
 - o Analogue Voltage (e.g. Typical Ranges: 0-5v, +/-10v)
 - o Digital (e.g. Typical Voltages: 3.3v, 5v, 12v, 24v)
- Serial Interfaces
 - o i2c and UART
- Signal Conditioning & Filtering
 - o Amplifiers
 - o Filters
 - o Protection

Programming Embedded Systems

- Common programming design patterns using While loops and conditional statements
- Reading from, and writing to hardware ports.

Control

- Control Objectives
 - o Set-point
 - o Tracking
 - o Stabilisation
- Closed-loop Control
- Feed-forward control
- ON/OFF (Bang-Bang) Control

Learning Activities

Tutorial and Practical activities supported by on-line resources.

Notes

This model incorporates elements of flipped delivery. The source of primary knowledge for this module will be via material made available through the VLE, while understanding will be developed through a tutorial and significant practical content.