Liverpool John Moores University

Title:	MICROPROCESSOR SYSTEMS		
Status:	Definitive		
Code:	5509TECSBC (113897)		
Version Start Date:	01-08-2016		
Owning School/Faculty: Teaching School/Faculty:	Maritime and Mechanical Engineering The Sino-British College		

Team	Leader
Russell English	Y

Academic Level:	FHEQ5	Credit Value:	12	Total Delivered Hours:	37
Total Learning Hours:	120	Private Study:	83		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	20
Practical	5
Tutorial	10

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	60	2
Essay	AS2	Coursework	40	

Aims

The module aims to broaden the students' knowledge and understanding of microprocessor based-systems and the techniques and methods used for interfacing with them.

Learning Outcomes

After completing the module the student should be able to:

- 1 Describe the fundamental components of a microprocessor based system, a typical architecture and associated instruction set.
- 2 Design and analyse a microprocessor based memory subsystem.
- 3 Design and analyse microprocessor based I/O interfacing and data transfer.
- 4 Design and interface a suitable display system for an embedded microprocessor system.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4
CW	2	3	4	

Outline Syllabus

Typical Microprocessor-based system architecture Volatile and Non-Volatile memory sub-systems including – SRAM, DRAM, PROM, EPROM, EEPROM and Flash I/O subsystems including – UART (RS232, RS485), SPI, I2C, CAN Common display systems including – LCD and seven segment displays.

Learning Activities

By a combination of lectures, tutorials, and laboratory design assignments.

Notes

This Level 2 module will provide undergraduate students in electronic engineering with intermediate level tools and skills necessary to design, test and implement electronic systems.