Liverpool John Moores University

Title:	MEASUREMENT AND CONTROL		
Status:	Definitive		
Code:	5510TECSBC (113901)		
Version Start Date:	01-08-2018		
Owning School/Faculty: Teaching School/Faculty:	Electronics and Electrical Engineering The Sino-British College		

Team	Leader
Dingli Yu	Y

Academic Level:	FHEQ5	Credit Value:	12	Total Delivered Hours:	37
Total Learning Hours:	120	Private Study:	83		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	20
Practical	5
Tutorial	10

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	60	2
Report	AS2	Coursework	40	

Aims

To develop an understanding of the application and design of measurement systems and techniques.

To introduce the principles of control systems, their analysis and design.

Learning Outcomes

After completing the module the student should be able to:

- 1 explain the basic concepts of dynamic system response and closed loop control.
- 2 develop models for dynamic plants
- 3 select sensors and design signal processing circuits for measurement systems.
- 4 demonstrate ability to design controllers and analyze system stability for simple linear systems.
- 5 explain the operation of and design PID controllers

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4
CW	2	4	5	

Outline Syllabus

Introduction: concepts of transient and steady-state response, open-loop and closed-loop control.

Modelling dynamic systems by deriving differential equations, transfer functions, and simplifying block diagrams. Simulate systems with Matlab/Simulink.

Measurement: concept of sensors, transducers and measurement systems. Static characteristics of sensors. Temperature, force and displacement measurement, and their signal conditioning circuits design.

Time response analysis: characteristics of first order and second order systems, system response to step and ramp input.

Controller design: design specification in time domain, direct synthesis method, functions of PID control, empirical method for PID controller parameter setting. Stability: concept of absolute and relative stability, system poles, Routh's stability criterion.

Learning Activities

By a series of lectures, tutorials, and laboratory experiments.

Notes

This module develops an understanding of the modelling, design, analysis and simulation of control systems, as well as some simple measurement systems.