Liverpool John Moores University

Title:	AEROSPACE TECHNOLOGY		
Status:	Definitive		
Code:	5514ENGHAL (106677)		
Version Start Date:	01-08-2016		
Owning School/Faculty: Teaching School/Faculty:	Maritime and Mechanical Engineering Riverside College		

Team	Leader
Russell English	Y

Academic Level:	FHEQ5	Credit Value:	12	Total Delivered Hours:	26
Total Learning Hours:	120	Private Study:	94		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	16
Practical	4
Tutorial	4

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Essay	AS1	Laboratory report(s)	30	
Exam	AS2	Examination	70	2

Aims

To develop the students ability to understand the advanced technologies that the aerospace industry relies on in particular aerodynamics, propulsion and environmental aspects.

Learning Outcomes

After completing the module the student should be able to:

- 1 apply the principles of thermodynamic and fluid mechanics principles to the solution of engineering problems
- 2 apply the theories and procedures associated with the aerodynamics and propulsion of aerospace vehicles.
- 3 recognise the causes and methods for prevention of environmental issues within the aerospace industry

3

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

CW	1	2	
EXAM	1	2	

Outline Syllabus

Fluid Mechanics – Aerodynamics

Introduction to basic internal/external aerodynamics at various Mach No's. Evaluation of lift and drag wrt aerospace vehicles and air flow through a jet engine. Applied Thermodynamics and Heat Transfer Gas power cycles, gas turbine analysis, 1-d steady flow and jet propulsion. Advanced forced convection, boundary layer theory, dimensional analysis, radiation. Propulsion Technology Appraisal of basic methods of propulsion associated with aerospace including i.c.engines, jet engines, turbomachinery and rockets. Fuels employed. Future developments. Environmental aspects Environmental issues. Measurable performance indicators : fuel burn ; emissions of nitrogen oxides (NOx) ; noise. Design optimisation trade-offs ; life cycle assessment.

Learning Activities

Lectures, tutorials and laboratory work.

Notes

The module introduces the student to the underlying theory and practice of aerospace technology to enable a basic understanding of aerodynamics, propulsion and environmental aspects.