Liverpool John Moores University

Title:	Engineering Principles	
Status:	Definitive	
Code:	5521ALAM (123815)	
Version Start Date:	01-08-2019	
Owning School/Faculty: Teaching School/Faculty:	Engineering Malaysian Maritime Academy	

Team	Leader
Geraint Phylip-Jones	Y

Academic Level:	FHEQ5	Credit Value:	20	Total Delivered Hours:	83
Total Learning Hours:	200	Private Study:	117		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	60
Tutorial	20

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	50	3
Portfolio	AS2	A portfolio of formative and summative assessment.	50	

Aims

To provide a comprehensive academic base in engineering principles. The module focuses elements of fluid mechanics, applied mechanics and mathematics.

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse behaviour of I-D flow for incompressible and compressible fluids.
- 2 Analyse and model static and dynamical behaviour of systems with one-degree-offreedom by applying the notions of stiffness, damping, natural frequency, rate of decay.
- 3 Use a range of mathematical functions in solution of engineering problems.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination	1	2	3
Portfolio	1	2	3

Outline Syllabus

1 Laminar and turbulent pipe flow, friction and minor losses in pipes and pipe networks.

Pumps and pump characteristic curves.

Descriptive treatment of real fluid flow.

1-D compressible flow. Mach no, isentropic flow, stagnation conditions, use of tables, flow

through nozzles (choked conditions and critical pressure ratio).

2 Failure Modes , yield criteria, application of Rankine, Tresca and Von-Mises theories to

components under bending and torsional loading conditions.

Application to brittle and ductile materials. Elastic instability.

Critical buckling loads. Use of Euler, Rankine-Gordon and Perry-Robertson methods.

Fatigue. S-N curves and endurance limit. Factors affecting the endurance limit and their application. Effects of non-zero mean stress.

3 Dynamics. Vibration 1 General planar motion. Two-dimensional kinematics and dynamics

of rigid bodies.

Free vibration of undamped/damped systems.

Harmonic motion/Damped motion.

Response of one and two degree-of-freedom systems to harmonic excitations. 4 Eigenvalues and modes.

Frequency response function. Vibration isolation. Vibration transmission. Practical examples: Suspension systems, Vibration absorbers.

5 Introduction to CFD, Transport equations, governing equations, grid formation and analysis.

6 Introduction to FEM, fundamental concepts, solution of simple one dimensional boundary value problems.

Learning Activities

A combination of lectures and tutorial sessions.

Notes

This module will provide a good grounding for professional sea going students.