

Approved, 2022.01

Summary Information

Module Code	5526USST	
Formal Module Title	Linear Electronics Design and the Environment	
Owning School	Engineering	
Career	Undergraduate	
Credits	10	
Academic level	FHEQ Level 5	
Grading Schema	40	

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Dante Matellini	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings
Partner Module Team		

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery	
LJMU Partner Taught	

Partner Teaching Institution

Institution Name

University of Shanghai For Science and Technology

Learning Methods

Learning Method Type	Hours
Lecture	22
Practical	11
Tutorial	11

Module Offering(s)

Offering Code	Location	Start Month	Duration
SEP-PAR	PAR	September	12 Weeks

Aims and Outcomes

Aims The module aims to broaden the students' knowledge and understanding of linear electronic circuit design, and also to provide students with practical skills necessary to design, analyse and simulate circuits regarding processing environmental signals.	
--	--

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Discuss linear circuit operation principles.
MLO2	Critical environmental signal measurement, data acquisition and processing.
MLO3	Design and analysis op-amp based filter, amplifier, power supply, data conversion circuits using CAD tools.
MLO4	Develop signal conditioning techniques regarding RF, FFT, EMC and harmonics.

Module Content

Outline Syllabus

Review of transistors: modelling, biasing and amplifiers.

Linear integrated circuits: differential amplifiers, current mirrors.

Power control, regulation, rectification and power amplification.

Design of linear circuits using op-amps: active filters and oscillators.

Instrumentation and data acquisition.

Understanding relevant parameters such as bandwidth, precision, slew rate, feedback, stability regarding RF, FFT, EMC and harmonic signals.

Module Overview

Additional Information

This Level 5 module will provide undergraduate students the knowledge and skills in linear electronic circuit design and application.

General Notes

UNESCO Sustainable Development Goals

Quality Education Industry, Innovation and Infrastructure Partnerships for the Goals

UK SPEC AHEP 4

CEng.

M7 Evaluate the environmental and societal impact of solutions to complex problems (to include the entire lifecycle of a product or process) and minimise adverse impacts.

M8 Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct.

M11 Adopt an inclusive approach to engineering practice and recognise the responsibilities, benefits and importance of supporting equality, diversity and inclusion.

M13 Select and apply appropriate materials, equipment, engineering technologies and processes, recognising their limitations.

IEng.

B1 Apply knowledge of mathematics, statistics, natural science and engineering

principles to broadly-defined problems. Some of the knowledge will be informed by current developments in the subject of study.

B2 Analyse broadly-defined problems reaching substantiated conclusions using first principles of mathematics, statistics, natural science and engineering principles.

B3 Select and apply appropriate computational and analytical techniques to model broadly-defined problems, recognising the limitations of the techniques employed.

B4 Select and evaluate technical literature and other sources of information to address broadly-defined problems. B5 Design solutions for broadly-defined problems that meet a combination of societal, user, business and customer needs as appropriate. This will involve consideration of applicable health and safety, diversity, inclusion, cultural, societal, environmental and commercial matters, codes of practice and industry standards.

B6 Apply an integrated or systems approach to the solution of broadly-defined problems.

B7 Evaluate the environmental and societal impact of solutions to broadly-defined problems.

B8 Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct.

B12 Use practical laboratory and workshop skills to investigate broadly-defined problems.

B13 Select and apply appropriate materials, equipment, engineering technologies and processes.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Exam	Exam	70	2	MLO1, MLO2, MLO3, MLO4
Portfolio	Portfolio	30	0	MLO1, MLO2, MLO3, MLO4