Liverpool John Moores University

Title:	DATA STRUCTURES AND ALGORITHMS		
Status:	Definitive		
Code:	5617YCOM (125487)		
Version Start Date:	01-08-2019		
Owning School/Faculty: Teaching School/Faculty:	Computer Science YPC International College (Kolej Antarabangsa YPC)		

Team	Leader
David Lamb	Y

Academic Level:	FHEQ5	Credit Value:	20	Total Delivered Hours:	57
Total Learning Hours:	200	Private Study:	143		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Workshop	55

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Artefacts	AS1	Design and implementation of software	40	
Exam	AS2	Examination	60	2

Aims

This is a practical, applied Software Engineering module with the aim of introducing the student to the fundamentals of Abstract Data Types and complexity of operations on ADTs followed by an implementation-based exploration of common data structures and operations, their implementations and applications

Learning Outcomes

After completing the module the student should be able to:

- 1 Explain a range of fundamental data structures and their operations
- 2 Analyse fundamental algorithms' complexity as applied to a range of ADT implementations
- 3 Evaluate data structures in a given problem domain
- 4 Implement standard ADTs using both primitive language and library resources
- 5 Synthesise appropriate algorithms and data structures to fulfil a problem specification

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Implementation of	3	4	5
software			
Examination	1	2	

Outline Syllabus

Abstract Data Types and common implementation strategies: Linear ADTs: Lists (Arrays, Linked Lists) Stacks, Queues Non-Linear ADTs: Trees, Binary Trees, BSTs Maps (ListMaps, BSTMaps, HashMaps) Graphs Algorithms for structure operations; insert, remove, retrieval Algorithms for structure navigation; search and sort Algorithm types: iterative and recursive Relationship between ADTs and computing fundamentals (e.g. Stack, Queue) Use of Big O notation to specify time complexity for simple algorithms Using a program debugger to monitor program state, and halt/control execution as required. Use of a program debugger to inspect the call stack and stack frames

Learning Activities

Workshops, Directed Study Tasks

Notes

This module is a technical, skills-focused module. It will require previous experience in programming. It will build on existing programming-based skills such as problem / functional decomposition and the use of an IDE to develop and test programs. Basic operational familiarity with a debugger will be assumed but reinforced and built on

during this module.