Liverpool John Moores University

Title:	Signal Processing
Status:	Definitive
Code:	6001ELE (120054)
Version Start Date:	01-08-2019
Owning School/Faculty:	Electronics and Electrical Engineering
Teaching School/Faculty:	Electronics and Electrical Engineering

Team	Leader
David Harvey	Y
Brahim Benbakhti	

Academic Level:	FHEQ6	Credit Value:	10	Total Delivered Hours:	38
Total Learning Hours:	100	Private Study:	62		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	24	
Practical	12	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam	Exam	70	2
Report	Report	Matlab exercises	30	

Aims

This module is intended to provide students with a good appreciation of the mathematical concepts necessary to apply digital signal and image processing algorithms to a range of engineering problems.

Learning Outcomes

After completing the module the student should be able to:

- 1 Characterise analogue and digital systems using appropriate transforms, impulse response and convolution
- 2 Design and implement digital filters
- 3 Estimate spectra using appropriate techniques
- 4 Apply DSP to a range of applications

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam	1	2	
Matlab exercises	1	2	3

Outline Syllabus

Signals and Systems - Foundations, Architecture Requirements and Characteristics Use of MATLAB & SIMULINK

4

Fundamentals – Linear Systems, Convolution and Properties of Convolution Transforms – Fourier: CTFT, DTFT, DFT, FFT; Laplace and Z-transforms Digital Filters - Basic Concepts

Finite Impulse Response filters (FIR) - Design, Fourier Series Approximation Analogue Prototypes - Butterworth, Chebyshev, Elliptic; Analogue-To-Analogue Transforms Infinite Impulse Response filters (IIR) - Design, Bilinear, Impulse Invariant Transforms

Digital Filters - Implementation, Algorithms & Finite Word Effects

ADCs & DACs - Sample and Hold, Antialiasing Multirate Signal Processing – Interpolation and Decimation Spectral Estimation Techniques – Random Processes, Autocorrelation, Periodogram, Bartlett, Welch and Blackman-Tuckey. Audio and Speech Processing – LPC, Synthesis, Coding and Recognition Time Frequency Analysis – Short term Fourier series, Wavelets, Filter-Banks 2D Signal Processing – Representation of images, 2D transforms Neural Networks - Target Detection, Architecture

Learning Activities

A series of lectures and tutorials, with some laboratory activities using MATLAB.

Notes

This module will provide students with a sound grasp of the theory and applications

of modern signal and image processing.