Liverpool John Moores University

Title:	BIO-ORGANIC CHEMISTRY
Status:	Definitive
Code:	6004CHACAP (113186)
Version Start Date:	01-08-2011
Owning School/Faculty:	Pharmacy & Biomolecular Sciences
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences

Team	Leader
Raymond Fox	Y
Mark Wainwright	
Gillian Hutcheon	
lan Bradshaw	

Academic Level:	FHEQ6	Credit Value:	24.00	Total Delivered Hours:	51.00
Total Learning Hours:	240	Private Study:	189		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	24.000
Practical	21.000
Tutorial	3.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70.0	3.00
Report	AS2	Coursework: Full details are provided in the module handbook	30.0	

Aims

To provide students with an up-to-date study of biomolecules and stress their importance in nature, research and industry. Emphasis will be given to the

biosynthesis, chemical synthesis, structural elucidation and conformation of biomolecules.

Learning Outcomes

After completing the module the student should be able to:

- 1 Recall the basic biosynthetic pathways leading to biomolecules and appreciate the variety of organic molecules found in nature
- 2 Devise a multi-stage sequence for the chemical synthesis of a given biomolecule.
- 3 Discuss methods for the structural elucidation of biomolecules
- 4 Correlate the structure of biomolecules with biological function.
- 5 Carry out a multi-stage sequence to synthesise a biomolecule and interpret spectroscopic data for structural determination.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination	1	3	4
Practicals and final report	2	3	5

Outline Syllabus

Four of the following areas will normally be studied in detail in any one year; amino acids, proteins, enzymes, alkaloids, carbohydrates and nucleic acids. Delivery of up-to-date material will come from staff with active research interests in these areas.

Overview of secondary metabolism. Diversity and importance of natural products. Formation of shikimic acid and chorismic acids. Formation of aromatic amino acids. Transamination reactions. Pyridoxal and pyridoxamine. Alkaloids: occurrence and general characteristics. Alkaloids from lysine and ornithine. Pyrrolidine and piperidine alkaloids. Radio-labels. Decarboxylation and methylation reactions. Tropinones. Alkaloids derived from tryptophan, tyrosine and phenylalanine.

Brief review of monosaccharides, before dealing with a major topic in carbohydrate chemistry such as synthesis of monosaccharides, synthesis of oligosaccharides or structural analysis of polysaccharides. A typical syllabus for synthesis of oligosaccharides would be: use of protecting groups, acetals; benzoate, acetate and sulphonate esters, benzyl ethers. Strategy for synthesis of oligosaccharides glycosyl donors and glycosyl acceptors. Activation of glycosyl donor. Methods for formation of glycosidic linkage, 1,2-trans and 1,2-cis glycosidic linkages. Use of imidates for oligosaccharide synthesis.

Brief review of amino acids (including synthesis) as the building block for peptides and proteins.

Principles of peptides synthesis. Review of protecting groups. Nitrogen (or amino) protecting groups, Z, BOC and FMOC groups. Protection of carboxylic acid group (esters). Side-chain protection. Methods for peptide bond formation. Activation of carboxylic acid group. Coupling reagents. Aspects of strategy in peptide synthesis. Examples of solution phase synthesis. Principles and techniques for solid-phase synthesis. Problems associated with peptide snythesis. Examples of solid phase synthesis. The syllabus may also be extended to glycopeptides.

Structure of proteins: Purification, determination of amino acid composition, Nterminal residue determination (Edman degradation), selective hydrolysis, mass spectroscopy.

Components of nucleic acids; heterocyclic bases, nucleosides and nucleotides. Phosphate esters. Hydrogen bonding between base pairs. Structure of RNA and DNA. Chemical synthesis of nuclosides/nucleotides. Biological function of nucleic acids; replication, recombination, transcription and translation.

Outline of protein structure and function. The use of enzyme catalysed reactions for organic synthesis. Advantages/Disadvantges of enzymes as catalysts. Synthetic and industrial applications. Reaction mechanisms. Immobilisation of enzymes. Enzymes in non-conventional media.

General principles of biosynthesis and methods of investigation of biosynthetic pathways will normally be incorporated into one of the main topic areas.

The practical sessions involve a multi-stage synthesis of a pheromone (queen bee substance) that comprises the following stages:

1 Preparation of carboethoxymethyltriphenylphosphonium bromide.

2 Preparation of carboethoxymethylenetriphenylphosphorane

3 Preparation of 8-hydroxyoctan-2-one from 5-bromopentyl acetate.

4 Isolation of 8-hydroxyoctan-2-one following (following stage 3).

5 Oxidation of 8-hydroxyoctan-2-one to 7-oxooctanal.

6 Wittig reaction of carboethoxymethyltriphenylphosphorane with 7-oxooctanal to produce the ethyl ester of queen bee substance.

7 Isolation of queen bee substance (following stage 6).

Review of NMR theory to accompany the interpretation of nmr spectra from the practical project.

Learning Activities

Lectures, tutorials and practical sessions (to include pre-lab and post-lab discussion).

References

Course Material	Book
Author	Mann, J et al
Publishing Year	1994
Title	Natural Products
Subtitle	Their Chemical and Biological Significance
Edition	
Publisher	Longman
ISBN	0582060092

Course Material	Book
Author	Hecht, SM
Publishing Year	1996
Title	Bioorganic Chemistry
Subtitle	Nucleic Acids
Edition	
Publisher	Oxford University Press
ISBN	0195084675

Course Material	Book
Author	Hecht, SM
Publishing Year	1999
Title	Bioorganic Chemistry
Subtitle	Carbohydrates
Edition	
Publisher	Oxford University Press
ISBN	0195084691

Course Material	Book
Author	Hecht, SM
Publishing Year	1998
Title	Bioorganic Chemistry
Subtitle	Peptides and Proteins
Edition	
Publisher	Oxford University Press
ISBN	0195084683

Course Material	Book
Author	Waldmann, H
Publishing Year	2004
Title	Bioorganic Chemistry and Chemical Biology

Subtitle	
Edition	
Publisher	Wiley-VCH
ISBN	3527307788

Course Material	Book
Author	Wong, CH and Whitesides, GM
Publishing Year	1994
Title	Enzymes in Organic Synthesis
Subtitle	
Edition	
Publisher	Pergamon
ISBN	0080359426

Course Material	Book
Author	Osborn, H and Khan, T
Publishing Year	2000
Title	Oligosaccharides
Subtitle	Their synthesis and biological roles
Edition	
Publisher	Oxford University Press
ISBN	0198502605

Course Material	Book
Author	Lindhorst, TK
Publishing Year	2003
Title	Essentials of Carbohydrate Chemistry and Biochemistry
Subtitle	
Edition	2nd
Publisher	Wiley
ISBN	3727306641

Book
Jones, J
2003
Amino Acid and Peptide Synthesis
2nd
Oxford University Press
0199257388

Notes

This module will build upon the material studied in Molecules of Life (PHCCH2015). The biosynthesis, chemical synthesis, structural elucidation and conformation of primary and secondary metabolites will be considered. Experience

of carrying out a multi-stage organic synthesis in the laboratory will be gained