Liverpool John Moores University

Title: MULTIVARIATE ANALYSIS AND DATA MINING

Status: Definitive

Code: **6006STATS** (117484)

Version Start Date: 01-08-2018

Owning School/Faculty: Applied Mathematics Teaching School/Faculty: Applied Mathematics

Team	Leader
Sandra Ortega Martorell	Υ
Ivo Siekmann	

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 75

Hours:

Total Private

Learning 240 Study: 165

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	22	
Practical	20	
Tutorial	30	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Technology	AS1	Minitab based coursework	20	
Report	AS2	Neural network based coursework	20	
Exam	AS3	Examination	60	3

Aims

To enable the student to explore the structure of multidimensional data sets.

To introduce the student to inferential procedures using multivariate data.

To provide the student with familiarity with linear and flexible methods for regression

and classification.

Learning Outcomes

After completing the module the student should be able to:

- 1 Carry out an exploratory numerical and graphical analysis of a set of multivariate data.
- 2 Recognize situations in which a multivariate approach is required and carry out the appropriate inferential procedures.
- 3 Classify future multivariate observations into one of a number of known populations.
- 4 Apply linear methods.
- 5 Apply neural network algorithms.
- 6 Report their conclusions in an appropriate manner.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Minitab 1 2

Neural networks 5

Examination 1 2 3 4 6

Outline Syllabus

Graphical display and numerical summary of multivariate data.

Investigation of the dependence among variables.

Discrimination and prediction. Error rate estimation.

Hypothesis construction and testing. Use of simultaneous confidence intervals. Principal Components Analysis.

Use of R for data exploration, parameter estimation and significance testing.

Stages of the data analysis using data mining, including how to create and evaluate models

Neural networks, including backpropagation, gradient descent, the momentum method

Clustering with k-means and k-medoids methods

Blind Source Separation, including Independent Component Analysis and Nonnegative Matrix Factorisation

Self-Organising Maps

Introduction to Big Data

Learning Activities

Lectures, tutorials, laboratory sessions, directed reading, coursework preparation and revision for examinations.

Notes

Multivariate data consist of observations taken on several variables from each experimental unit. The special problems associated with data of this type will be covered in this module. The course extends beyond linear methods into adaptive non-linear modeling.