Liverpool John Moores University

Title: FUNCTIONAL MORPHOLOGY

Status: Definitive

Code: **6007NATSCI** (101270)

Version Start Date: 01-08-2019

Owning School/Faculty: Natural Sciences & Psychology Teaching School/Faculty: Natural Sciences & Psychology

Team	Leader
James Ohman	Υ
Carlo Meloro	
Claudia Mettke-Hofmann	

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 46

Hours:

Total Private

Learning 240 Study: 194

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	23	
Practical	7	
Seminar	9	
Workshop	5	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	exam	Examination	50	2
Presentation	Present	Presentation	50	

Aims

To investigate the biomechanical and developmental factors affecting functional adaptations in vertebrates, with emphasis on reconstruction of the appearance, movements and behaviours of extinct vertebrates.

Learning Outcomes

After completing the module the student should be able to:

- 1 Perform biomechanical analyses of the musculoskeletal system.
- 2 Critically analyse the interpretation of function from form.
- 3 Discuss the evolution of human bipedality.
- 4 Discuss morphological analyses from a developmental perspective.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination 1 2 3 4

Presentation 2 3 4

Outline Syllabus

Biomechanics, including theoretical bases and methodologies. The use of modern imaging technologies (e.g., computed tomography and radiographs) and analyses in biomechanical studies. Critical analyses of the interpretation of function from form, with examples from extant and extinct animals. Interpretation of the evolution of human bipedality, with critical assessment of existing hypotheses. The impact of modern developmental biology and embryogensis on the interpretation of functional adaptations in animals.

Learning Activities

The module will be taught through a combination of lectures, seminars and practicals.

Notes

This module explores the modern role of functional morphology for the interpretation of functional adaptations in animals. Emphasis is placed on reconstruction of the appearance, movements and behaviours of extinct animals, and the impact of modern developmental biology is discussed.