Liverpool John Moores University

Title:	ADVANCED CALCULUS AND RIGID 3D MOTION
Status:	Definitive
Code:	6009MATHS (120291)
Version Start Date:	01-08-2018
Owning School/Faculty: Teaching School/Faculty:	Applied Mathematics Applied Mathematics

Team	Leader
Ivan Olier-Caparroso	Y
Paul Strickland	

Academic Level:	FHEQ6	Credit Value:	24	Total Delivered Hours:	40.5
Total Learning Hours:	240	Private Study:	199.5		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	13
Tutorial	26

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Report	AS1	Report on rigid body motion in 3D.	50	
Report	AS2	Report based on questions on Fourier series and complex analysis.	20	
Exam	AS3	Examination	30	1.5

Aims

To further develop the student's ability to understand and use a wide range of mathematical methods in the solution of problems arising in the field of applicable mathematics.

To develop the skills necessary for independent learning in higher mathematics, using rigid 3D motion as an exemplar.

Learning Outcomes

After completing the module the student should be able to:

- 1 Use complex analysis to solve problems in calculus.
- 2 Determine the gradient, divergence and curl of scalar and vector quantities as appropriate, state the theorems of Gauss, Green and Stokes and apply them in a selection of case studies from physics and engineering.
- 3 Analyze periodic phenomena into corresponding Fourier series, using both analytic and numerical techniques.
- 4 Derive information by reading mathematical papers.
- 5 Perform calculations relating to different representations of rigid body transformations.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Rigid body motion	4	5	
Fourier series	1	3	
Examination	1	2	3

Outline Syllabus

Fourier series: functions of arbitrary period, Odd and even functions, Vector calculus: gradient, divergence and curl.

Partial differential equations: solution by separation of variable with applications to the wave, Laplace and diffusion equations.

Complex function theory, including concepts of continuity, analyticity, integration, residues and poles.

Multiple integrals in Cartesian co-ordinates only. Theorems of Gauss, Green and Stokes with physical applications.

Learning Activities

Lectures, tutorials and substantial self-study.

Notes

This module gives students the opportunity to apply mathematics to scientific problems, and to learn how to read a relatively recent piece of mathematics.