Liverpool John Moores University

Title:	SPORT AND EXERCISE BIOMECHANICS
Status:	Definitive
Code:	6019SPOSCI (117546)
Version Start Date:	01-08-2018
Owning School/Faculty:	Sport and Exercise Sciences
Teaching School/Faculty:	Sport and Exercise Sciences

Team	Leader
Mark Lake	Y
Thomas O'Brien	
Constantinos Maganaris	
Jos Vanrenterghem	
Gabor Barton	
Mark Robinson	

Academic Level:	FHEQ6	Credit Value:	24	Total Delivered Hours:	48
Total Learning Hours:	240	Private Study:	192		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	36
Practical	10

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Report	Lab report	Human Locomotion	25	
Essay	Critique	Biomechanics Modelling	25	
Exam	Essay	Biomechanical Mechanisms	50	2

Aims

The aim of this module is to critically appraise the key biomechanical concepts and

research areas within sport and exercise and related equipment. Included in that appraisal will be the analysis of the biomechanics of locomotion and current biomechanical perspectives on a variety of sports skills.

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse human locomotion and develop experimental reporting skills.
- 2 Critically review selected sports and exercise skills in biomechanical terms.
- 3 Critically evaluate a sports skill using biomechanical modelling software.
- 4 Critically evaluate the biomechanical mechanisms involved in sport and exercise skills.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Human Locomotion	1	2
Biomechanics Modelling	3	
Biomechanical Mechanisms	4	

Outline Syllabus

Biomechanical Applications in sport performance including a range of selected sports skills Mathematical modeling and simulation (open SIMM software package) Biomechanical Applications in health Biomechanical Applications in sports injury Biomechanical Applications in Sports and Exercise Equipment Biomechanics of muscle, tendons and joints

Learning Activities

Students should attend lectures and participate in practicals on a weekly basis. They also will have some tutorial sessions on lecture material and computer simulation packages. In addition, they will also have to complete a laboratory report and an essay interpreting results from modelling software.

Notes

This module is focused on biomechanical mechanisms and concepts in Sport and Exercise Science, in contrast to the other level 6 module Human Movement Science which covers some general concepts in exercise science together with a sound biomechanical quantitative foundation. Therefore, this module is geared towards

students who are specialising in the biomechanics discipline.