Liverpool John Moores University

Title:	DECISION SUPPORT SYSTEMS AND FUZZY LOGIC
Status:	Definitive
Code:	6022TECH (105438)
Version Start Date:	01-08-2016
Owning School/Faculty: Teaching School/Faculty:	Electronics and Electrical Engineering Electronics and Electrical Engineering

Team	Leader
Karl Jones	Y

Academic Level:	FHEQ6	Credit Value:	12	Total Delivered Hours:	24
Total Learning Hours:	120	Private Study:	96		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	18
Practical	6

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Essay	AS1	Assessment 1: Written work	30	
Essay	AS2	Assessment 2: Development of a DSS	40	
Essay	AS3	Assessment 3: Development of a FL System	30	

Aims

To appreciate the applicability of Decision Support Systems (DSS) and knowledge based systems to commercial problems and to gain experience in building a small scale DSS.

To highlight the concepts of Fuzzy Logic and create a Fuzzy Logic System.

Learning Outcomes

After completing the module the student should be able to:

- 1 Appreciate the role of Decision Support Systems in a commercial setting
- 2 Perform knowledge acquisition, elicitation and representation
- 3 Create a small scale Decision Support System
- 4 Comprehend the fundamentals of Fuzzy Logic
- 5 Develop a Fuzzy Logic System

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

CW	1	
CW	2	3
CW	4	5

Outline Syllabus

Intelligent knowledge based systems: introduction to Knowledge Based Systems and Decision Support Systems methods of knowledge representation production rules, frames, logic, semantic networks, predicate logic methods of knowledge acquisition, knowledge elicitation KBS functions: rule based systems, inference engines, chaining

Fuzzy logic: fuzzy fundamentals, fuzzy calculus, fuzzy mathematics fuzzification and defuzzification inference methods membership functions

Learning Activities

Lectures supported by handouts & tutorials where appropriate. Practical sessions will use software packages for knowledge base development. An individual student report is required for the coursework.

Notes

This module provides a basic introduction into artificial intelligence, allowing an application-specific Decision Support Systems program and a Fuzzy Logic System to be created.