Liverpool John Moores University

Title: FURTHER CONCEPTS IN PHYSICS

Status: Definitive

Code: **6041PGSKSC** (104424)

Version Start Date: 01-08-2016

Owning School/Faculty: Education Teaching School/Faculty: Education

Team	Leader
Kenneth Clays	Υ
Michael Inglis	

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 50

Hours:

Total Private

Learning 240 Study: 190

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	20	
Practical	10	
Seminar	10	
Tutorial	8	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Exam - 2 hrs	40	2
Test	AS2	Directed Tasks (2,400 words equivalent)	40	
Reflection	AS3	Reflective Log (1,200 words equivalent)	20	

Aims

This module will enable students to develop understanding of key physics principles relating to electricity and atomic structure.

Learning Outcomes

After completing the module the student should be able to:

- Apply key concepts of electricity and atomic models to analysis of physical systems,
- 2 Critically evaluate and reflect on their learning and independently plan to extend their subject knowledge to a level for teaching secondary school physics.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM 1
CW 1
CW 2

Outline Syllabus

Development of atomic models
Periodic table
Ionizing radiations
Electrostatics and electricity in terms of particle models
Behaviour of series and parallel resistive circuits
Current, voltage and resistance
Resistivity

Learning Activities

Lectures
Workshops
Practicals and Independent Study

Notes

The Module supports learning about physics concepts relevant to the National Curriculum and Post-16 curricula and an audit of knowledge and understanding of physics content will be made during the module.