Liverpool John Moores University

Title: ADVANCED MATERIALS AND PROCESSING

Status: Definitive

Code: **6042ENG** (105532)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
James Ren	Υ

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 51

Hours:

Total Private

Learning 240 Study: 189

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	36	
Practical	4	
Tutorial	8	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70	3
Essay	AS2	A major materials coursework	30	

Aims

To develop a wide knowledge of advanced materials and manufacturing; To study the materials and process selections involved in the design and manufacture of engineering products.

Learning Outcomes

After completing the module the student should be able to:

- 1 critically review the mechanical performance and application of a range of engineering materials
- 2 discuss the development of advanced materials and their processing method
- 3 select materials/process to meet the performance requirements of a range of engineering applications
- 4 recognise the use of life cycle analysis and practices with respect to recycling issues

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM 1 2 3 4

CW 3 4

Outline Syllabus

Properties and application of advanced materials, light weight materials, high performance alloys

High strength steels - strengthening mechanisms, heat treatment, surface hardening, and structure-properties relationships

Nonferrous materials - aluminium alloys and titanium alloys – phase diagram, microstructure, heat treatment, properties and performances

Plastics and composites: fibre reinforced composites, structure-properties relationships, and design for strength

Machining processes of metal materials: turning, grinding, parameter selection Casting and powder metallurgy of metals and ceramics

Moulding processes of polymers and composites: extrusion, injection moulding, compression moulding

Destructive and non-destructive techniques (NDT): dye penetrant, ultrasonic, eddy current, magnetic particle and X-ray methods, application and limitations
The selection of materials and process on basis of performance requirements: strength, stiffness, toughness, fatigue resistance and energy absorption.
New materials development, life cycle analysis and recycling issues.

Learning Activities

A series of lectures supported by tutorials, videos and practical laboratory work.

Notes

Explores the combination of modern manufacturing techniques using a knowledge of process parameters and the properties and behaviour of advanced materials which

govern the design of manufacturing processes. Life cycle analysis and recycling issues will also be investigated.