Liverpool John Moores University

Title:	Topics in Pharmaceutical Chemistry
Status:	Definitive
Code:	6051CHACAP (119151)
Version Start Date:	01-08-2012
Owning School/Faculty:	Pharmacy & Biomolecular Sciences
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences

Team	Leader
Barry Nicholls	Y
Mark Wainwright	
Gillian Hutcheon	
lan Bradshaw	

Academic Level:	FHEQ6	Credit Value:	12.00	Total Delivered Hours:	28.00
Total Learning Hours:	120	Private Study:	92		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	24.000
Tutorial	4.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Test	Final test	In-class test of duration 1.5 hours	50.0	1.50
Essay	Assignment	Multi-topic written assignment covering three topics	35.0	4.00
Technology	CAL test	On-line test covering one topic	15.0	2.00

Aims

To present and illustrate molecular and biomolecular chemical reactions and processes associated with drug development and synthesis and pharmaceutical applications

Learning Outcomes

After completing the module the student should be able to:

- 1 apply the design principles and use of heterocycles in drug synthesis
- 2 discuss the use of organometallic complexes in the catalysis of selected organic transformations
- 3 rationalise the use of polymers in the delivery of drugs to patients
- 4 devise a multi-stage sequence for the chemical synthesis of an oligosacharide

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

In-class test	1	2	3	4
Multi-topic assignment	1	3	4	
On-line test	2			

Outline Syllabus

□ Modern drug synthesis: heterocyclic synthesis; drug design as a basis for biomolecular action. E.g. quinolines/quinolones

□ Organometallic synthesis and catalysis; catalytic hydrogenation and asymmetric hydrogenation. Example of the synthesis of L-DOPA.

□ Biodegradable Polymers for drug delivery. The synthesis of a selection of polymers currently used for drug delivery applications. A brief overview of polymer characterization. Chemical and physical properties of different polymers and how these influence the biomedical application.

□ Synthesis of Oligosaccharides : Review of methods for the introduction and removal of suitable protecting groups. The use of different strategies and coupling reactions for chemical synthesis of the oligosaccharides will be illustrated. Comparison with enzymic methods. Biological and pharmaceutical significance of synthetic oligosaccharides.

Learning Activities

Lectures and tutorials

References

Course Material	Website
Author	Nicholls, B.S.

Publishing Year	2007
Title	ChemiCAL Virtual Lectures
Subtitle	Homogeneous Catalysis
Edition	
Publisher	LJMU Network
ISBN	

Course Material	Book
Author	Hill, A.F.
Publishing Year	2002
Title	Organotransition Metal Chemistry
Subtitle	Tutorial Chemistry Texts
Edition	1st
Publisher	Royal Society of Chemistry
ISBN	0-85404-622-4

Course Material	Book
Author	Patrick, G.L.
Publishing Year	2009
Title	An Introduction to Medicinal Chemistry
Subtitle	
Edition	4th
Publisher	Open University Press
ISBN	978-0-19-923447-9

Course Material	Book
Author	Chasin, M. and Langer, L.
Publishing Year	1990
Title	Biodegradable Polymers as Drug Delivery Systems
Subtitle	
Edition	
Publisher	Dekker
ISBN	978-0-82-478344-0

Notes

Optional module to offer chemical principles to the area of pharmaceutical sciences