Liverpool John Moores University

Title: ADVANCED COMPUTER GRAPHICS

Status: Definitive

Code: **6065COMP** (117750)

Version Start Date: 01-08-2019

Owning School/Faculty: Computer Science Teaching School/Faculty: Computer Science

Team	Leader
Sud Sudirman	Υ
Abdennour El-Rhalibi	

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 72

Hours:

Total Private

Learning 240 Study: 168

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	24	
Tutorial	24	
Workshop	24	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Report on mathematics and physics concepts.	30	
Essay	AS2	Report on state-of-the-art computer graphics technology as used in computer games.	20	
Artefacts	AS3	Implementation of a complex 3D graphics application.	50	

Aims

To provide additional mathematical and physics knowledge essential in complex 3D

graphics and game software.

To explain the state-of-the-art computer graphics and optimization processes.

To develop skills in advanced computer graphics operations using modern graphical API.

To develop specific programming skills related to computer graphics.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically evaluate the mathematical concepts behind rigid body movements in 3D space.
- 2 Solve complex problems in 3D graphics and game using appropriate the mathematical and physics concepts.
- 3 Critically evaluate the state-of-art graphics processes employed in modern games development.
- 4 Critically evaluate the graphics rendering pipeline architecture and the way it affects GPU optimization.
- Demonstrate sound knowledge of hardware transformations, lighting, multitexturing, 3D collision detection and collision reaction.
- 6 Demonstrate ability to utilize High Level Shader Technologies.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Maths and physics 1 2

Computer graphics 3 4

3D graphics application 5 6

Outline Syllabus

Basic Concepts of Game Physics: Rigid Body Classification, Newton's Law, Forces and Momentum

Rigid Body Motion: Newtonian and Lagrangian Dynamics

Ordinary Differential Equations

Numerical Calculus including Runge Kutta method

Rigid body movements in 3D space.

Interpolation techniques: Linear, Polynomial, Spline

Curves: Bezier, Catmull-Rom.

How to implement sub-systems (Collision/Animation) etc. with our Geometry.

Collision Response (Using Normals and Tangents, etc.).

Deferred rendering and Post-processing.

Faking Global Illumination: Shadows and Ambient Occlusion

Procedurally Generated Terrain, Optimizing graphical scene and Level of Detail

The future of real-time graphics rendering

Learning Activities

Lectures incorporating demonstrations will be followed by tutor-led practical sessions. These will be supported by practical work in the laboratory.

Notes

This module teaches students advanced computer graphics techniques and the relevant mathematical concepts such as numerical calculus, complex numbers and quaternions. The module will use a modern graphics API such as OpenGL or DirectX to demonstrate how complex scenery can be constructed using a wide range of advanced graphics techniques.