Liverpool John Moores University

Title:	COMPUTATIONAL FLUID DYNAMICS FOR DESIGN		
Status:	Definitive		
Code:	6082ENG (115897)		
Version Start Date:	01-08-2018		
Owning School/Faculty: Teaching School/Faculty:	Maritime and Mechanical Engineering Maritime and Mechanical Engineering		

Team	Leader
David Allanson	Y

Academic Level:	FHEQ6	Credit Value:	10	Total Delivered Hours:	33
Total Learning Hours:	100	Private Study:	67		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	11
Practical	22

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Test	AS1	Invigilated Blackboard test	40	
Test	AS2	Invigilated Blackboard test with prior seen project element	60	

Aims

To provide the student with a fundamental understanding of important techniques in computational fluid dynamics and to extend their experience and skill with the aid of applications related software.

Learning Outcomes

After completing the module the student should be able to:

- 1 Set up and validate CFD model to solve a real fluid flow problem.
- 2 Discuss the limitations and use of CFD as part of the design process.
- 3 Evaluate output from a CFD analysis
- 4 Explain the basic theory underpinning commercial CFD codes.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Blackboard test	1	3	4	
test of seen project	1	2	3	4

Outline Syllabus

Qualitative revision of real fluid flow Introduction to CFD with industrial examples of usage Governing equations (Navier-Stokes, Energy, Continuity). Boundary layers. Turbulence - qualitative understanding. Time averaging. Turbulence modelling. Discretization methods. Convection-diffusion problems. Upwinding. Pressure-velocity coupling. Transient calculations. Implementation of boundary conditions. Use of commercial CFD code to solve engineering problem.

Learning Activities

Lectures and guided computer workshops

Notes

This module is intended to provide the student with all the necessary skills to undertake a CFD analysis using a commercial CFD package. In addition it provides the student with knowledge of the basic theory underpinning CFD commercial codes.