

Approved, 2022.05

Summary Information

Module Code	6101MATHS		
Formal Module Title	Operational Research		
Owning School	Computer Science and Mathematics		
Career	Undergraduate		
Credits	20		
Academic level	FHEQ Level 6		
Grading Schema	40		

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Vincent Kwasnica	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings	
Partner Module Team			

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery	
Computer Science and Mathematics	

Learning Methods

Learning Method Type	Hours
----------------------	-------

Lecture	33
Practical	11
Tutorial	11

Module Offering(s)

Offering Code	Location	Start Month	Duration
JAN-CTY	СТҮ	January	12 Weeks

Aims and Outcomes

Aims	To examine a wide range of operational research methods and their applicability to real-life problems
AIIIIS	encountered in business and industry.

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Apply operations research methods for solution of practical problems.
MLO2	Express operational research analyses in the vernacular (for non-experts).
MLO3	Formulate and solve problems involving operational research.

Module Content

Outline Syllabus

Linear programming: definition of a linear programming problem, graphical representation, the Simplex method and revised Simplex method, sensitivity analysis. Transportation problems: transportation algorithm, unequal supply and demand, optimal sourcing problems, trans-shipment problems. Assignment problems: maximisation of resources. Integer programming: relevance of integer variables, Branch & Bound method, Gomory's method of Cutting Planes. Non-linear programming: non-linearity of objective and constraint functions, method of steepest ascent. Simulation: basic principles, examples taken from investment appraisal, Queuing Theory and traffic management. Queuing Theory: single server and multiple server models, Little's formula, Pollaczek-Khintchine formula. Inventory models: Deterministic and Stochastic Inventory models. Critical Path Analysis: the method and its use in the management of problems, PERT, Crashing Networks, Gantt Charts.Heuristic methods: Scheduling problems, Heuristic Thinking. Software packages: Review of available software, practice in the use of one such package to solve more realistic real-life problems.

Module Overview

The aim of this module is to examine a wide range of operational research methods and your applicability to real-life problems encountered in business and industry.

Additional Information

Procedures for formulating and solving mathematical programming problems which have business applications are presented.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Centralised Exam	Examination	70	2	MLO3, MLO2, MLO1
Report	Coursework	30	0	MLO1, MLO2, MLO3