

Microbial Technology

Module Information

2022.01, Approved

Summary Information

Module Code	6104BCBMOL
Formal Module Title	Microbial Technology
Owning School	Pharmacy & Biomolecular Sciences
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 6
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery	
Pharmacy & Biomolecular Sciences	

Learning Methods

Learning Method Type	Hours
Lecture	25
Practical	12
Workshop	10

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
JAN-CTY	СТҮ	January	12 Weeks

Aims and Outcomes

Aims	To provide an understanding of the microbial principles that underline advanced microbiological technology
------	--

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Demonstrate an ability to analyse complex data sets from a range of bioinformatics sources.
MLO2	2	Design a microbial process to produce a desired product
MLO3	3	Exhibit a clear understanding of the mechanisms and associated molecular entities that confer antibiotic resistance in pathogenic bacteria.

Module Content

Outline Syllabus	Antibiotic production, new generation sequencing, bioremediation, antibiotic/antiviral resistance and surveillance, rapid methods, recombinant products, imaging techniques, flow cytometry, current microbial processes, phage therapy.
Module Overview	This module will build upon core knowledge in microbiology covered in levels 4 and 5. It will provide you with training and assessment in areas including bioinformatics, new generation sequencing and its applications, antibiotic production, imaging technology, antibiotic resistance, phage therapy and will include the application of microbial processes to bioremediation and also product formation.
Additional Information	This module will build upon core knowledge from levels 4 and 5 in microbiology. It will provide training and assessment in areas including bioinformatics, new generation sequencing and its applications, antibiotic production, imaging technology, antibiotic resistance, phage therapy and will include the application of microbial processes to bioremediation and also product formation. Assessment is byExam 2hrs answering 3 questions from 6Practical report 1500 words

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Centralised Exam	Exam	60	2	MLO2, MLO3
Report	Full report	40	0	MLO1

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Glyn Hobbs	Yes	N/A

Partner Module Team