

Industrial Control Systems and Programming

Module Information

2022.01, Approved

Summary Information

Module Code	6104MSE
Formal Module Title	Industrial Control Systems and Programming
Owning School	Engineering
Career	Undergraduate
Credits	40
Academic level	FHEQ Level 6
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery
Engineering
LJMU Partner Taught

Partner Teaching Institution

Institution Name	
Siemens PLC	

Learning Methods

Learning Method Type	Hours
Tutorial	12
Workshop	90

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-PAR	PAR	September	28 Weeks

Aims and Outcomes

Aims	1. To develop understanding of structured programming applied to industrial controls systems to enable the student to assess a control problem and create a program solution to that problem;2. To introduce elements of control hardware, provide an understanding of the hardware operations, and to enable the student to assess a problem and choose appropriate hardware combinations;3. To provide the student with the knowledge and methods required to analyse and troubleshoot hardware and software in a control system, to isolate problems, and provide solutions.
------	---

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Evaluate a control problem and determine an appropriate structured solution
MLO2	2	Appraise a control problem and select appropriate hardware combinations
MLO3	3	Determine problems in a control system and develop a solution

Module Content

Outline Syllabus	Block call and the multi-instance model applied to structured programming; Use and application of complex data types and variables; Indirect addressing and address register instructions; Block cells and parameter passing; Handling of synchronous and asynchronous errors; Using recipes.Inter device communications; Data communication with industrial Ethernet; Introduction to the PROFINET I/O system;Introduction to totally integrated automation (controllers, CPU's, modules, tools and software packages); Configuration of CPU hardware and running diagnostics; Symbolic addressing.Principles and application of structured programming; Application of binary operations; Application of extended digital operations; Troubleshooting and debugging functions to analyse controller problems.Introduction to the G120 and controlling of variable speed drives; Storing process data; Application and use of functions and function blocks; Application and use of organisational blocks; Processing of analogue inputs and valuesMethods for program design; Application of multi-instance control instructions; Implementing data exchange between controllers; Analysing diagnostic data for fault finding.
Module Overview	
Additional Information	The course combines Siemens Total Integrated Automation (TIA) units: TIA-PRO1 (5 days), TIAPRO2 (5 days), TIA-PRO3 (5 days) and CPT-FAP (3 days)). These take the student from fundamental to advanced programmer level. Students should assess their basic knowledge of automation technology by taking an on-line test (Test TIA-PRO1) and achieve more than 70% before enrolling on the course.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Centralised Exam	Practical exam	100	4.5	MLO1, MLO2, MLO3

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Rob Darlington	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings	