Liverpool John Moores University

Title: ALPINE ENVIRONMENTS

Status: Definitive

Code: **6109NATSCI** (119162)

Version Start Date: 01-08-2016

Owning School/Faculty: Natural Sciences & Psychology Teaching School/Faculty: Education, Health and Community

Team	Leader
Patrick Byrne	Υ
Timothy Stott	

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 48

Hours:

Total Private

Learning 240 Study: 192

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	10	
Off Site	28	
Practical	10	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	Report	Field report	50	
Presentation	Seminar	Seminar	20	
Essay	Essay	Timed essay	30	

Aims

This module aims to introduce students to the theory & practice behind current research into alpine glaciers and rivers.

Learning Outcomes

After completing the module the student should be able to:

- Design and carry out field-based investigations in an alpine glacial or fluvial environment.
- 2 Report the findings of an individual research project to a professional standard using an oral presentation and written report.
- 3 Demonstrate familiarity with current research literature on alpine glacial and fluvial processes.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Field report 1 2

Seminar 2 3

Timed essay 3

Outline Syllabus

One week residential fieldtrip to a glacier in the Swiss Alps to conduct field research & data collection.

Lectures on glacier theory (mass balance, thermal regime, glacial hydrology & ice dynamics) & fluvial processes in alpine proglacial environments (discharge, suspended sediment, water quality). Effects of climate change on glaciers and rivers. Applications of remote sensing in alpine research. Practical sessions to analyse & interpret data collected in the field.

Learning Activities

Residential fieldtrip, lectures, practicals.

Notes

The module is a combination of a week's fieldwork on an alpine glacier, and lectures & practicals back in the UK. Students will collect their own field and remotely sensed datasets, and will analyse & interpret them within a theoretical framework provided by lectures.