Liverpool John Moores University

Title: PURE MATHEMATICS 3

Status: Definitive

Code: **6114EDSTUD** (117576)

Version Start Date: 01-08-2018

Owning School/Faculty: Education Teaching School/Faculty: Education

Team	Leader
Amir Asghari	Υ

Academic Credit Total

Level: FHEQ6 Value: 24 Delivered 51

Hours:

Total Private

Learning 240 Study: 189

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	38	
Workshop	10	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam	Terminal exam	75	3
Portfolio	Proofs	Continuity proofs exercises	25	

Aims

To develop knowledge and techniques in multiple integrals, partial differential equations mathematical analysis and series approximations to functions and appreciation of their connections to other areas of pure and applied mathematics

Learning Outcomes

After completing the module the student should be able to:

- 1 Be able to formulate, solve and apply problems involving multiple integrals
- 2 Be able to formulate, solve and apply problems involving partial differential equations
- Understand and be able to use in proofs the formal mathematical concepts of the limit of a series and the continuity of a function
- 4 Understand and be able to use in proofs the approximations of functions using power, Taylor and Fourier series

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Terminal assessment 1 2 4

Proofs 3

Outline Syllabus

Multiple integrals.

Simple partial differential equations and some common examples and applications. Limits of series – epsilon delta definitions and proofs, tests for convergence, de l'

Hôpital's Rule.

Continuity of functions.

Links to the foundations of calculus

Power series, radius of convergence.

Taylor series.

Fourier series.

Learning Activities

Lectures, workshops and independent learning activities

Notes

Core course for Mathematics and Education Studies