Liverpool John Moores University

Title:	Electrical Machines and Variable Speed Drives
Status:	Definitive
Code:	6118MSE (120767)
Version Start Date:	01-08-2018
Owning School/Faculty:	Electronics and Electrical Engineering
Teaching School/Faculty:	Electronics and Electrical Engineering

Team	Leader
Martin Jones	Y
Emil Levi	

Academic Level:	FHEQ6	Credit Value:	10	Total Delivered Hours:	26
Total Learning Hours:	100	Private Study:	74		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	12
Practical	6
Tutorial	6

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Steady-state operation of Dc and AC machines	30	
Exam	AS2	Final exam (2hrs)	70	2

Aims

This module is intended to achieve the following programme aims within the field of Electrical Engineering:

• To introduce three-phase circuits and to further develop circuit analysis skills

relating to ac circuits.

• To develop an understanding of the operating principles of electrical machines.

• To introduce the principles of control of variable speed electric drives using power electronic converters.

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse single-phase and three-phase circuits
- 2 Analyse and appreciate steady-state operating characteristics of dc and induction machines.
- 3 Understand and discuss the operating principles of dc and ac variable speed drives
- 4 Perform standard laboratory tests on electrical machinery.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

DC & AC machines	4		
Exam	1	2	3

Outline Syllabus

Single phase AC circuits: Phasors, real, apparent and reactive power, power factor. Balanced three-phase systems: phase sequence, types of connection, powers. Steady-state operation of dc machines: types, circuits and equations, speed-torque curve.

Steady-state operation of induction machines: operating principle, equivalent circuit, phasor diagram, torque-speed curve, losses and efficiency.

General drive considerations: operating quadrants, motoring, breaking, regeneration. Mechanical considerations: - load torque profiles, gearing.

Speed control of dc motors, armature voltage variation using power electronic converters

Speed control of induction machines – V/f control, soft starting, wye-delta starting.

Learning Activities

A series of lectures, tutorials and laboratory sessions.

Notes

This level 6 module introduces the concepts and operating principles of rotating electrical machines and of variable speed drives commonly found in the industrial

manufacturing sector.