Liverpool John Moores University

Title:	Structural Integrity
Status:	Definitive
Code:	6159ENG (120028)
Version Start Date:	01-08-2019
Owning School/Faculty:	Maritime and Mechanical Engineering
Teaching School/Faculty:	Maritime and Mechanical Engineering

Team	Leader
Glynn Rothwell	Y
Russell English	

Academic Level:	FHEQ6	Credit Value:	10	Total Delivered Hours:	44
Total Learning Hours:	100	Private Study:	56		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	24	
Practical	6	
Tutorial	12	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS2	Examination	70	2
Report	AS1	Coursework - Laboratory based assignment	30	

Aims

To enable students to develop an understanding of the performance of materials and structures subjected to load in terms of deformation based failure, fracture and fatigue.

Learning Outcomes

After completing the module the student should be able to:

- 1 Undertake a deformation based structural integrity analysis.
- 2 Undertake a fracture and fatigue based structural integrity analysis.
- 3 Use software tools to predict failure.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam 1 2

Coursework - Lab based 3 assign

Outline Syllabus

Deformation Based Failure

Plastic Deformation

Basic plasticity, review of yield criteria, von-Mises, Tresca, yield locus – 2D and 3D representation.

Post yield behaviour, hardening rules, elastic perfectly plastic, elastic linear strain hardening.

Application to beams in bending, shape functions, plastic collapse, limit loads. Application to pressure vessels, bursting of thin walled vessels, bursting of thick walled vessels.

Application to the bursting of spinning discs.

Buckling Poview of basic theory fo

Review of basic theory for struts, extension to deep walled beam sections and thin walled tubes under torsional loading.

FEA methodology for bucking, eigenvalue extraction.

Creep Deformation

The classical creep curve, creep mechanisms, stages of creep, creep (Arrhenius) equation, effects of temperature and applied stress, creep testing.

Fatigue and Fracture

Linear Elastic Fracture Mechanics Stresses at a crack tip, energy approach, stress intensity factor approach, effects of finite geometry, compendia solutions. Crack tip plasticity, effects of material thickness on fracture. LEFM testing.

Elastic Plastic Fracture Mechanics

J integral, effects of constraint. Failure assessment diagrams, application to real structures EPFM testing

Finite Element Analysis of Fracture Modelling stress singularities, the need for crack tip elements, determination of K and J, use of software.

Fatigue

Review of high cycle fatigue, S-N curve approach, mechanisms of fatigue, crack initiation and growth, Paris law and LEFM approach to fatigue. Non-destructive testing methods.

Learning Activities

Lectures, tutorial and practicals

Notes

The module will provide students with an in depth understanding of structural integrity and the assessment of materials and structures under load.