Liverpool John Moores University

Title: INDUSTRIAL AUTOMATION

Status: Definitive

Code: **6500ENGCBT** (118456)

Version Start Date: 01-08-2011

Owning School/Faculty: Engineering Teaching School/Faculty: Partner College

Team	emplid	Leader
Gareth Lewis		Υ

Academic Credit Total

Level: FHEQ6 Value: 12.00 Delivered 37.00

83

Hours:

Total Private Learning 120 Study:

Hours:

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	20.000
Practical	5.000
Tutorial	10.000

Grading Basis: 40 %

Assessment Details

	Category	Short Description	Description	Weighting (%)	Exam Duration
	Exam	AS1	Examination	70.0	2.00
ĺ	Report	AS2	Laboratory assignment	30.0	

Aims

To develop the students' knowledge and understanding of industrial automation systems for manufacturing and process industries

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically review the differences between the various types of programmable logic controllers to choose an appropriate device for an application
- 2 Analyse industrial control problems and design suitable solutions
- Write PLC programs in the appropriate language
- Understand how to integrate external devices into a PLC based industrial automation system

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	3	4
C/W	1	2	3

Outline Syllabus

Programmable Logical Controller systems. Programming with IEC 61131-3 standards – ladder diagram (LD), function block (FBD) and sequential function chart (SFC) programming. PLC input/output considerations. Designing sequential systems using a State Machine paradigm. Introduction to networks used in industrial control systems: PROFIBUS, Ethernet/PROFINET. Integration of proximity sensors, fail safe sensors, flow, pressure, level and temperature measurement sensors, linear and rotary valve positioners, code reading sensors and RFID devices.

Learning Activities

Lectures, tutorials, laboratories, assignments, private study

References

Course Material	Book
Author	Parr E.A
Publishing Year	2003
Title	Programmable Controllers - An Engineer's Guide
Subtitle	
Edition	
Publisher	Newnes
ISBN	

Course Material	Book
Author	IEC 61131-3
Publishing Year	2001
Title	'Programming Industrial Automation Systems

Subtitle	Concepts and Programming Languages, Requirements for Programming Systems, AIDS to Decision-Making Tools'	
Edition		
Publisher	Springer-Verlag Berlin and Heidelberg GmbH & Co	
ISBN	3540677526	

Notes

On completion of the module the student should be able to design and implement automation systems for a range of industrial applications from factory automation to process control.