Liverpool John Moores University

Title: CONTROL SYSTEMS

Status: Definitive

Code: **6500TECSBC** (113913)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering

Teaching School/Faculty: The Sino-British College

Team	Leader
Russell English	Υ

Academic Credit Total

Level: FHEQ6 Value: 12 Delivered 37

Hours:

Total Private

Learning 120 Study: 83

Hours:

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours	
Lecture	20	
Practical	5	
Tutorial	10	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70	2
Essay	AS2	Coursework	30	

Aims

To extend the basic concepts of control in level 2 in the design and analysis of control systems.

Learning Outcomes

After completing the module the student should be able to:

- 1 analyse and design dynamic compensation employing frequency analysis
- 2 construct root locus of closed-loop system response and design systems using root locus technique
- 3 examine and evaluate system stability
- 4 understand the state space concept and characteristics of linear systems
- 5 apply state feedback control with pole-placement method
- 6 design and simulate control systems using computer software, e.g. Matlab/Simulink

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam	1	2	3	4	5
Essay	1	2	6		

Outline Syllabus

Root locus: root locus concepts and construction. Analysis and design with root locus. Frequency analysis: Nyquist criterion, Bode plots, design criteria in frequency domain. Compensation of systems with frequency analysis method. State space: state variables and state space models, stability, controllability and observability, state feedback control by pole placement

Learning Activities

Combination of lectures, tutorials and laboratory work

Notes

This level 3 module extends level 2 concepts into continuous control design using frequency response, root locus and state space methods.