

Digital Signal Processing

Module Information

2022.01, Approved

Summary Information

Module Code	6501ICBTBE
Formal Module Title	Digital Signal Processing
Owning School	Pharmacy & Biomolecular Sciences
Career	Undergraduate
Credits	10
Academic level	FHEQ Level 6
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery

LJMU Partner Taught

Partner Teaching Institution

Institution Name

International College of Business and Technology

Learning Methods

Learning Method Type	Hours
Lecture	30
Practical	6
Tutorial	9

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
SEP-PAR	PAR	September	12 Weeks

Aims and Outcomes

Aims process biome	elop learners' understanding of engineering signal conversion and digital signal sing. It will also develop the skills needed to modify or update existing electronics or dical engineering systems using digital signal processing techniques, and to design ering applications that use digital signal processing (DSP) techniques.
--------------------	---

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Investigate and identify the fundamental concepts and types of digital signal processing.
MLO2	2	Evaluate and solve problems related data conversion techniques for signals.
MLO3	3	Solve problems related digital signal processing techniques for engineering signals.
MLO4	4	Investigate, evaluate and analyse DSP techniques used in engineering. Simulate and analyse DSP techniques using a suitable software such as MATLAB.

Module Content

Outline Syllabus	Conversion of engineering signals from one form to anotherData conversion: analogue and digital signals; sampling theorem; analogue to digital conversion (ADC); digital to analogue conversion (DAC); coding; quantization; aliasing error; pre-filtering or anti-aliasing filtering. Spectra: Fourier transform (FT) representation of discrete time signals; recovery of original analogue signal from its discrete form using appropriate filtering. Standard digital signal processing techniquesDigital filtering: building blocks for DSP operations; Z-transforms; inverse Z-transforms; implementation models of finite impulse response (FIR) filters; implementation models of infinite impulse response (IIR) filters; digital resonator. Convolution; correlation. Models of digital signal processing used in industryCurrent applications: block diagrams to explain the embedded features of DSP in applications, e.g. mobile phones, radar, digital radio, digital cameras DSP versus microprocessors: advantages of using dedicated DSP devices; architectures; operating systems; choice of DSPs; choice of DSP platforms. Understand the use of computer simulation to design engineering applications of digital signal processing Digital filter design: design of FIR digital filters; design of IIR digital filters Adaptive filter: least mean square algorithm; gradient descent adaptation; noise cancellation; equalization Computer simulation: digital filters, e.g., FIR, IIR, adaptive
Module Overview	
Additional Information	This module is part of the Level 6 of the BEng(Hons) in Biomedical Engineering

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Exam	Examination	70	2	MLO1, MLO2, MLO3
Essay	Coursework Assignment	30	0	MLO4

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Katie Evans	Yes	N/A

Partner Module Team