Embedded Systems
 Module Information

2022.01, Approved

Summary Information

Module Code	6504SDLBHG
Formal Module Title	Embedded Systems
Owning School	Computer Science and Mathematics
Career	Undergraduate
Credits	20
Academic level	FHEQ Level 6
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery
LJMU Partner Taught

Partner Teaching Institution

Institution Name

Beaconhouse Group

Learning Methods

Learning Method Type	Hours
Online	44

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
JAN-PAR	PAR	January	12 Weeks

Aims and Outcomes

To provide an overview of designing and engineering embedded systems, including high-level hardware architectures and software systems with references to architectures, communication and synchronisation. To investigate the development of a connected embedded system and appropriate support software services.

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Critically survey technologies and methods used in embedded systems design and development.
MLO2	2	Solve execution issues intrinsic to embedded architectures and develop software for embedded systems alongside other software systems.
MLO3	3	Appraise communications standards and techniques used in embedded systems.
MLO4	4	Critically evaluate operational issues in embedded and concurrent systems.

Module Content

Abstract

Outline Syllabus

Module Overview

Additional Information

Embedded Systems: Basic Architectures / Issues-baremetal, superloops and real-time operating systems-interrupt-driven executionGPIO - Getting data in / out and electronicsoftware interfacing-basic related interfacing/electronics concepts-analogue-digital conversion and PWM-noise reduction/filteringMemory and storage: resource constrained systems-Programmer-centred memory management : stack, heap and global/statics-Smart pointers and automatic release / garbage collectionSerial over GPIO - SPI, I2C, flash/SD card storageBus systems and line arbitration / access-shared clock / asynchronous vs. synchronous systems-Hardware-support and bit-banged (software-defined) implementationsWiFi and Internet connectivity-common library and driver support-socket programming and stream parsing-RESTful server and smart client provisioning-Automatic update mechanisms Patternbased embedded software design-Superloop and/vs Strategy / State / State Table / Scheduling-Façade / Proxy / Mediator / interfacingConcurrent vs. Serial execution-Liveness and Deadlock-Data Races and Atomicity

This module broadens a Software Engineer's horizons to include system and software development for embedded systems, with consideration of the Internet of Things. Students are required to have considerable high-level programming knowledge by level 6 ; this will be expanded to consider working with lower-level architectural concerns and development software for "baremetal" systems.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Technology	Embedded system	50	0	MLO1, MLO2
Exam	Examination	50	2	MLO3, MLO4

Module Contacts

Module Leader

David Lamb	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings

