Liverpool John Moores University

Title:	ADVANCED MATERIALS AND PROCESSING		
Status:	Definitive		
Code:	6505ENGCBT (118462)		
Version Start Date:	01-08-2016		
Owning School/Faculty: Teaching School/Faculty:	Maritime and Mechanical Engineering Partner College		

Team	Leader
James Ren	Y
Stephen Ebbrell	

Academic Level:	FHEQ6	Credit Value:	12	Total Delivered Hours:	37
Total Learning Hours:	120	Private Study:	83		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	20
Practical	5
Tutorial	10

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	70	2
Report	AS2	Coursework	30	

Aims

To develop a wide knowledge of advanced materials and manufacturing methods. To study the materials and process selection involved in the design and manufacture of engineering products.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically review the mechanical performance and application of a range of engineering materials.
- 2 Discuss the development of advanced materials and their processing methods
- 3 Select materials/processes to meet the performance requirements of a range of engineering applications.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3
CW	2	3	

Outline Syllabus

High strength steels - strengthening mechanisms, heat treatment, surface hardening, and structure-properties relationships.

Nonferrous materials - aluminium alloys and titanium alloys – phase diagram, microstructure, heat treatment, properties and performances.

Precision machining processes: turning, milling, abrasive processes, hard-turning. Mechanics of cutting. Mechanics of grinding.

Polymers and composites: structure-properties relationships, applications and design for strength.

Forming and shaping plastic and composite materials: extrusion, injection moulding, compression moulding blow moulding, compression moulding, etc.

Powder metallurgy of metals and ceramics: production of metal powders,

compaction, sintering, secondary and finishing processes, design considerations, shaping ceramics etc.

Destructive and non-destructive techniques (NDT): dye penetrant, ultrasonic, eddy current, magnetic particle and X-ray methods, application and limitations.

Learning Activities

A series of lectures supported by tutorials and practical laboratory work.

Notes

Explores the combination of modern manufacturing techniques using a knowledge of process parameters and the properties and behaviour of advanced materials which govern the design of manufacturing processes.