

Thermodynamics

Module Information

2022.01, Approved

Summary Information

Module Code	6509USST
Formal Module Title	Thermodynamics
Owning School	Engineering
Career	Undergraduate
Credits	10
Academic level	FHEQ Level 6
Grading Schema	40

Teaching Responsibility

LJMU Schools involved in Delivery

LJMU Partner Taught

Partner Teaching Institution

Institution Name

University of Shanghai For Science and Technology

Learning Methods

Learning Method Type	Hours
Lecture	22
Practical	6
Tutorial	11

Module Offering(s)

Display Name	Location	Start Month	Duration Number Duration Unit
JAN-PAR	PAR	January	12 Weeks

Aims and Outcomes

Aims To introduce the essential principles of Thermodynamics are	nd Fluid Mechanics
--	--------------------

After completing the module the student should be able to:

Learning Outcomes

Code	Number	Description
MLO1	1	Critically analyse the operating characteristics of advanced gas turbine power plants
MLO2	2	Critically analyse the operating characteristics of advanced vapour power cycles
MLO3	3	Predict the behaviour of psychometric processes
MLO4	4	Analyse and appraise the compressible flow of gases and vapours

Module Content

Outline Syllabus	Complex gas turbine power plant, multi-stage compression and expansion, exhaust gas heat exchangers and the application of free power turbines with gas generators. Complex vapour power cycles, reheat, regenerative cycles with open and closed feed heaters. Combine heat and power vapour cycles with process steam bleed off. Use of Mollier chart for steam turbine expansion. Psychrometry, psycrometric processes and the psychrometic chart. Psychrometic plant such as air conditioning and climate control. 1D Isentropic flows of gases and vapours. Stagnation properties and the use of isentropic flow tables. Normal shock waves and normal shock relationships and tables. Application to nozzles, diffusers and turbines.
Module Overview	
Additional Information	This module takes an in-depth look into the operation and thermodynamic cycle of engineering plant. The analysis of plant performance is delivered by lectures and tutorials which requires the student to have a fundamental understanding of the principles and how to apply them to practical situations.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Module Learning Outcome Mapping
Exam	Examination	70	2	MLO1, MLO2, MLO3, MLO4
Portfolio	Portfolio	30	0	MLO1, MLO2, MLO3, MLO4

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Geraint Phylip-Jones	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings