Liverpool John Moores University

Title: ADVANCED MATERIALS AND PROCESSING

Status: Definitive

Code: **6522ENGIOM** (117263)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Russell English	Υ
James Ren	

Academic Credit Total

Level: FHEQ6 Value: 20 Delivered 51

Hours:

Total Private

Learning 200 Study: 149

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours	
Lecture	36	
Practical	4	
Tutorial	8	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam		70	3
Report	Materials	Materials design and selection	15	
Report	Manufactur	Manufacturing study	15	

Aims

To develop a wide knowledge of advanced materials and manufacturing; To study the materials and process selections involved in the design and manufacture of engineering products.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically review the mechanical performance and application of a range of engineering materials and advanced materials
- 2 Discuss the use of life cycle analysis and practices with respect to recycling issues and green design
- 3 Critically analyse modern processing methods and their application in the modern manufacturing environment
- 4 Select appropriate material- removal processes and machines for cost effective manufacturing

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

 Exam
 1
 2
 3
 4

 Materials
 1
 2

 Manufacturing
 3
 4

Outline Syllabus

Properties and application of advanced materials, light weight materials, high performance alloys

High strength steels - strengthening mechanisms, heat treatment, surface hardening, and structure-properties relationships

Nonferrous materials - aluminium alloys and titanium alloys – phase diagram, microstructure, heat treatment, properties and performances

Plastics and composites: fibre reinforced composites, structure-properties relationships, and design for strength

Machining processes of metal materials: turning, milling, grinding, parameter selection

Casting and powder metallurgy of metals and ceramics

Moulding processes of polymers and composites: extrusion, injection moulding, compression moulding

Non-traditional manufacturing processes: laser cutting/machining, water jet cutting, EDM, ECM, chemical machining etc.

The selection of materials and process on basis of performance requirements: strength, stiffness, toughness, fatigue resistance and energy absorption. New materials development, life cycle analysis and recycling issues.

Learning Activities

A series of lectures supported by tutorials, videos and practical laboratory work

Notes

Explores the combination of modern manufacturing techniques using a knowledge of process parameters and the properties and behaviour of advanced materials which govern the design of manufacturing processes. Life cycle analysis and recycling issues will also be investigated.