Liverpool John Moores University

Title: CONTROL SYSTEMS

Status: Definitive

Code: **6525ENGIOM** (117275)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Russell English	Υ
Barry Gomm	

Academic Credit Total

Level: FHEQ6 Value: 20 Delivered 50

Hours:

Total Private

Learning 200 Study: 150

Hours:

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	36
Practical	12

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Exam	Exam		50	2
Essay	Essay		25	
Essay	Essay		25	

Aims

To extend the basic concepts of control in level 5 in the design and analysis of continuous and digital control systems

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse and design control systems employing frequency analysis
- 2 Construct root locus of closed-loop systems and design systems using root locus technique
- Apply the state space concept to analyse linear systems and design state feedback control with pole-placement method
- 4 Analyse and synthesize sampled-data systems in the z-domain
- Design and simulate control systems using computer software, e.g. Matlab/Simulink, Scilab

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Exam	1	2	3	4
Essay 1	1	5		
Essay 2	2	4	5	

Outline Syllabus

Root locus: root locus concepts and construction. analysis and design with root locus. Frequency analysis: Nyquist criterion, Bode plots, design criteria in frequency domain.

State space: state variables and state space models, controllability and observability, pole placement by state feedback, state observers.

Digital systems: sampled-data systems, pulse transfer function, closed-loop transfer function, stability analysis, implementation of digital controllers, discrete system simulation

Learning Activities

Combination of lectures and laboratory work

Notes

This level 6 module extends level 5 concepts into continuous control design using frequency response, root locus and state space methods. It also extends level 5 concepts into discrete control system modelling and controller design by mathematical analysis and synthesis.