Liverpool John Moores University

Title: COMPUTATIONAL FLUID DYNAMICS FOR DESIGN

Status: Definitive

Code: **6527ENGIOM** (117277)

Version Start Date: 01-08-2016

Owning School/Faculty: Maritime and Mechanical Engineering Teaching School/Faculty: Maritime and Mechanical Engineering

Team	Leader
Russell English	Υ
Neil Woolley	

Academic Credit Total

Level: FHEQ6 Value: 10 Delivered 33

Hours:

Total Private

Learning 100 Study: 67

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	11	
Practical	22	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	AS1	Coursework: Portfolio of CFD solutions	30	
Report	AS2	Coursework: Major individual/group flow simulation	70	

Aims

To provide the student with a fundamental understanding of important techniques in computational fluid dynamics and to extend their experience and skill with the aid of applications related software.

Learning Outcomes

After completing the module the student should be able to:

- 1 Set up and validate CFD model to solve a real fluid flow problem.
- 2 Discuss the limitations and use of CFD as part of the design process.
- 3 Evaluate output from a CFD analysis
- 4 Explain the basic theory underpinning commercial CFD codes.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Portfolio 1 2 3 4

Flow simulation 1 3 4

Outline Syllabus

Qualitative revision of real fluid flow

Introduction to CFD with industrial examples of usage

Governing equations (Navier-Stokes, Energy, Continuity). Boundary layers.

Turbulence - qualitative understanding. Time averaging. Turbulence modelling.

Discretization methods. Convection-diffusion problems. Upwinding.

Pressure-velocity coupling.

Transient calculations. Implementation of boundary conditions.

Use of commercial CFD code to solve engineering problem.

Learning Activities

Lectures and guided computer workshops

Notes

This module is intended to provide the student with all the necessary skills to undertake a CFD analysis using a commercial CFD package. In addition it provides the student with knowledge of the basic theory underpinning CFD commercial codes.