Liverpool John Moores University

Title:	IMAGE PROCESSING AND COMPUTER VISION		
Status:	Definitive		
Code:	7000COMP (120637)		
Version Start Date:	01-08-2018		
Owning School/Faculty: Teaching School/Faculty:	Computer Science Computer Science		

Team	Leader
Sud Sudirman	Y

Academic Level:	FHEQ7	Credit Value:	20	Total Delivered Hours:	36
Total Learning Hours:	200	Private Study:	164		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours			
Lecture	12			
Practical	24			

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Artefacts	AS1	Implementation of Image Processing and Computer Vision	100	

Aims

To provide the underpinning knowledge, concepts and principles of Computer Vision and Image Processing.

To develop the expertise in Image Processing using GPGPU. To develop the expertise in Computer Vision as a tool in computer games development.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically evaluate common Computer Vision and Image Processing algorithms.
- 2 Critically analyse theoretical and practical capabilities and limitation of Computer Vision.
- 3 Design and implement Image Processing and Computer Vision algorithms using GPGPU.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Implementation 1 2 3

Outline Syllabus

Sampling and Quantization Colour Transformation Spatial and Frequency Spatial and Frequency Domain Filtering Edge detection Segmentation Object recognition GPGPU programming

Learning Activities

The lectures will cover the theory and concepts on Image Processing and Computer Vision. The practical sessions will involve tutor-led practical design and development activities that leds to the implementation of a computer software using GPGPU coding.

Notes

This module teaches the principles of image processing and its application using GPGPU in computer games, including colour transformation, spatial and frequency domain filtering and sampling. The module also covers computer vision algorithms with topics ranging from basic operations such as edge detections and segmentation to the more complex processes such as object recognition.