

Approved, 2022.06

Summary Information

Module Code	7010ASTPHY
Formal Module Title	Astrophysical Concepts
Owning School	Astrophysics Research Institute
Career	Postgraduate Taught
Credits	30
Academic level	FHEQ Level 7
Grading Schema	50

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Benjamin Davies	Yes	N/A

Module Team Member

Contact Name	Applies to all offerings	Offerings
Stacey Habergham-Mawson	Yes	N/A
Fiona Murphy-Glaysher	Yes	N/A
Matthew Darnley	Yes	N/A
Marie Martig	Yes	N/A

Partner Module Team

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery	
Astrophysics Research Institute	

Learning Methods

Learning Method Type	Hours
Online	45

Module Offering(s)

Offering Code	Location	Start Month	Duration
SEP-CTY	CTY	September	12 Weeks

Aims and Outcomes

Aims * To develop a firm grounding in orbital mechanics and current knowledge of the formation and evolution of planetary systems* To provide students with an understanding of the physical processes whichdetermine all aspects of the structure of stars and stellar atmospheres.* To introduce students to the nature of stellar evolution* To introduce students to the diversity of galaxy morphologies, dynamics evolution andcomponents.* To illustrate the importance of multi-wavelength observational approaches to thestudy of galaxies.* To provide students with an introduction to modern observational cosmology and various cosmological models.

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Demonstrate a detailed knowledge and comprehensive understanding of astrophysical concepts
MLO2	Utilise that content to describe a detailed coherent picture of the constituent components of the universe and how they develop
MLO3	Apply an in-depth knowledge of physical and mathematical techniques to effectively solve astronomical problems

Module Content

Outline Syllabus

1. Kepler's Laws and the generalisation to Newton's Law of Universal Gravitation; applying Gravity: Tidal interactions, Roche Limits and the Virial Theorem.2. Formation of planetary systems, including the Solar System and techniques for detecting exoplanets.3. Introduction to stellar properties and observables; equations of hydrostatic equilibrium, mass conservation, energy generation and transport. 4. Stellar Interiors and Atmospheres; radiative transfer, spectral lines, model stellar spectra. Main-sequence stars and their post main-sequence evolution5. Galaxy classifications; stellar and gas contents, sizes and luminosities for differenttypes, with the Milky Way as an important example6. Multi-wavelength studies of galaxies, with particular emphasis on gas, and dust asboth an obscuring (optical/UV) and emitting (thermal IR, ULIRGs etc) component7. Overview of galaxy formation and evolution in a Lambda-CDM cosmology8. Introduction to Cosmology: Isotropy and Homogeneity; Galaxies, clusters and superclusters.9. Geometry of the Universe and Dynamical evolution.

Module Overview

This module develops your understanding of concepts in astrophysics. It:

develops your knowledge of grounding in orbital mechanics and the formation and evolution of planetary systems

provides an understanding of the physical processes which determine all aspects of the structure and evolution of the interstellar medium and stars (ISM)

provides a firm physical framework for this appreciation by investigating the mechanisms which govern the structure and appearance of the ISM

introduces you to the diversity of galaxy morphologies, dynamics evolution and components

allows you to illustrate the importance of multi-wavelength observational approaches to the study of galaxies

provides an introduction to modern observational cosmology and various cosmological models

Additional Information

This module is designed to introduce astrophysics concepts to students who have completed undergraduate degrees in other scientific subjects. There will be particular emphasis on developing independent learning skills and IT capability to access and extract relevant scientific information via Canvas and databases available from LJMU. Module is delivered by distance learning.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Test	Online Final Test	70	3	MLO1, MLO3, MLO2
Test	Tests	30	0	MLO1, MLO3, MLO2