Liverpool John Moores University

Title: CELL TECHNOLOGY

Status: Definitive

Code: **7016BTBMOL** (120649)

Version Start Date: 01-08-2015

Owning School/Faculty: Pharmacy & Biomolecular Sciences Teaching School/Faculty: Pharmacy & Biomolecular Sciences

Team	Leader
Steven Crosby	Y
Darren Sexton	
Laura Randle	
Kenneth Ritchie	
Mark Murphy	
Glyn Hobbs	
Patricia Burke	

Academic Credit Total

Level: FHEQ7 Value: 20.00 Delivered 36.00

Hours:

Total Private

Learning 200 Study: 164

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	21.000	
Practical	9.000	
Seminar	4.000	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	Exam	Examination - essay questions	60.0	2.00
Report	Report	Practical report	40.0	

Aims

To provide an understanding of cell culture as a technological component of aspects of biological research and commercial exploitation.

Learning Outcomes

After completing the module the student should be able to:

- Demonstrate an understanding of the applications of cell technology and discuss the techniques used in culturing animal cells.
- 2 Discuss the principles involved in the commercial production of therapeutic agents from cells.
- 3 Analyze, interpret and critically discuss data relating to cell technology.
- 4 Discuss methods which are commonly used in plant cell culture.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination 1 2 4

Report 3 4

Outline Syllabus

Animal cell culture methods and factors necessary for the maintenance and growth of cells in culture. Design of culture facilities. Safety issues.

Genetic engineering of animal cells: infection, expression vectors, immortalised cell lines, transgenic animals.

Animal cell products and commercialisation.

Plant cell culture and commercial products derived from plant cells.

Protein expression and processing. Scale-up, bioreactors, process control and downstream processing.

Learning Activities

Lectures, practical.

Notes

This module provides an insight into the principles and practical techniques involved in the commercial exploitation of animal cell processes.