Liverpool John Moores University

Title: WIRELESS SENSOR NETWORKS

Status: Definitive

Code: **7018ENG** (105402)

Version Start Date: 01-08-2016

Owning School/Faculty: Electronics and Electrical Engineering Teaching School/Faculty: Electronics and Electrical Engineering

Team	Leader
Ronan McMahon	Υ
Princy Johnson	

Academic Credit Total

Level: FHEQ7 Value: 15 Delivered 38

Hours:

Total Private

Learning 150 Study: 112

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	30
Practical	6

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1	Examination	50	2
Essay	AS2	Assignment	20	
Essay	AS3	Case study	30	

Aims

To introduce fundamental concepts and the state of the art in wireless sensor networks.

Learning Outcomes

After completing the module the student should be able to:

- demonstrate a comprehensive understanding of the concepts and principles surrounding the Wireless Sensor Networks (WSNs).
- demonstrate a comprehensive knowledge and understanding of the evolution of the WSNs, opportunities and the issues posed by WSNs
- identify, classify and describe the performance of transport protocols, routing and data dissemination through the use of analytical methods and modelling techniques.
- 4 apply mathematical and computer-based models for solving problems and the ability to assess the limitations of security issues in sensor networks.
- 5 extract data pertinent to networks problems, and apply in its solution using computer based engineering tools when appropriate.
- 6 manipulate the sensor network middle-ware, data storage in sensor networks, localisation, sensor node hardware and operating systems

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

EXAM	1	2	3	4	5	6
CW	1	4	6			
CW	2	5				

Outline Syllabus

Lecture 1: Introduction & Overview

Lecture 2: Sensor Node Hardware & Operating Systems

Lecture 3: Medium Access Control

Lecture 4: Localisation

Lecture 5: Topology Control

Lecture 6: Data Storage in Sensor Networks

Lecture 7: Sensor Network Programming Languages

Lecture 8: Simulation & Experiment Environments

Lecture 9: Security issues in Sensor Networks

Lecture 10: Transport protocols

Lecture 11-12: Applications

Learning Activities

This module will be delivered through a combination of formal lectures, tutorials and assignments.

Notes

The module will introduce students to fundamental concepts and the state of the art in wireless sensor networks.