Liverpool John Moores University

Title:	TECHNICAL TRAINING IN BIOMECHANICS	
Status:	Definitive	
Code:	7023SPOSCI (114331)	
Version Start Date:	01-08-2014	
Owning School/Faculty:	Sports Sciences	
Teaching School/Faculty:	Sports Sciences	

Team	Leader
Mark Robinson	Y
Thomas O'Brien	
Mark Lake	

Academic Level:	FHEQ7	Credit Value:	20.00	Total Delivered Hours:	24.00
Total Learning Hours:	200	Private Study:	176		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Practical	20.000
Tutorial	4.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Portfolio	Report 1	Laboratory report (1500 words)	50.0	
Report	Report 2	Laboratory report (1500 words)	50.0	

Aims

The aim of this module is to provide technical training in laboratory techniques appropriate to sport and exercise biomechanics.

The module will provide the opportunity for students to develop laboratory skills so that they are able to collect and interpret biomechanical data to benchmark standards.

Learning Outcomes

After completing the module the student should be able to:

- 1 Establish quality control indices for biomechanical measurement.
- 2 Conduct laboratory based protocols according to benchmark standards.
- 3 Demonstrate expertise in validity and reliability as applied to biomechanical techniques.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Lab report 1	1	2	3
Lab report 2	1	2	3

Outline Syllabus

- 1. 2D motion analysis and data smoothing
- 2. 3D Optoelectronic motion analysis
- data collection training
- reconstruction accuracy
- QTM data processing
- high speed kinematics
- 3. Kinetics (reliability and validity)

4. Combining Kinetics and Kinematics Inverse Dynamics – training on VISUAL3D modelling

5. Collect complete 3D movement analysis data (Regression & Correlation)

Learning Activities

This module provides two hours of direct contact per week. Almost all sessions will be in the lab working hands on with biomechanics equipment. In addition to taught classes, an independent activity will be set each week. These activities will be used to (a) develop independent skills related to content of that week's class, (b) prepare data collection to feed into subsequent classes and assessments, and (c) serve as data for analysis in other modules (specifically Research Methods).

References

Course Material	Book
Author	Payton, C. & Bartlett, R.
Publishing Year	2008
Title	Biomechanical evaluation of movement in sport and
	exercise: The BASES guidelines
Subtitle	
Edition	
Publisher	Routledge
ISBN	

Course Material	Book
Author	Grimshaw, P., Lees, A., Fowler, N. & Burden, A.
Publishing Year	2006
Title	Sport and Exercise Biomechanics
Subtitle	
Edition	
Publisher	Taylor & Francis, New York
ISBN	

Course Material	Book	
Author	Robertson, D. G. E, Caldwell, G., Hamill, J., Kamen, G and	
	Whittlesey, S. N	
Publishing Year	2004	
Title	Research methods in Biomechanics.	
Subtitle		
Edition		
Publisher	Human Kinetics: Champaign, Illinois.	
ISBN		

Course Material	Book
Author	Winter, D.A.
Publishing Year	2009
Title	Biomechanics and motor control of human movement
Subtitle	
Edition	
Publisher	Wiley, New Jersey
ISBN	

Notes

This module provides an opportunity to focus onto the detailed use of biomechanical techniques. Aspects of the advanced methodology in force and motion analysis will be visited.

This module is fundamental to the collection of high quality experimental data in biomechanics, which feeds directly into the independent research project for the MSc

thesis.