Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title: ANALYSIS AND DESIGN USING CFD

Status: Definitive but changes made

Code: **7024ENG** (105366)

Version Start Date: 01-08-2011

Owning School/Faculty: Engineering Teaching School/Faculty: Engineering

Team	Leader
David Allanson	Y
Andrew Cunningham	
Neil Woolley	

Academic Credit Total

Level: FHEQ7 Value: 10.00 Delivered 84.00

Hours:

Total Private

Learning 100 Study: 16

Hours:

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours	
Lecture	12.000	
Practical	48.000	
Tutorial	24.000	

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Essay	AS1	Coursework: Portfolio of CFD solutions	50.0	
Essay	AS2	Coursework: Major individual flow simulation	50.0	

Aims

To provide the student with a fundamental understanding of important techniques in computational fluid dynamics as applied to engineering design. To extend their

experience and skill in engineering analysis with the aid of applications related software.

Learning Outcomes

After completing the module the student should be able to:

- 1 Use a commercial CFD package to solve real fluid flow problems
- 2 Appreciate the limitations and use of CFD as part of the design process
- 3 Evaluate output from a CFD analysis
- 4 Appreciate the basic theory underpinning commercial CFD computer codes

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Essay 1 2 3 4
Essay 1 2 3 4

Outline Syllabus

Qualitative revision of real fluid flow
Introduction to CFD with industrial examples of usage
Governing equations (Navier-Stokes, Energy, Continuity). Boundary layers.
Turbulence - qualitative understanding. Time averaging. Turbulence modelling.
Discretization methods. Convection-diffusion problems. Upwinding.
Transient calculations. Implementation of boundary conditions.
Use of commercial CFD code to solve engineering problems.

Learning Activities

Lectures and guided computer workshops

References

Course Material	Book
Author	Pulliam,T.H.
Publishing Year	2001
Title	Fundamentals of computational fluid dynamics
Subtitle	
Edition	
Publisher	Springer Verlag
ISBN	3540416072

Notes

This module is intended to provide the student with all the necessary skills to undertake a CFD analysis using a commercial CFD code. It provides the student with knowledge of the basic theory underpinning CFD commercial codes.