Liverpool John Moores University

Title:	COMPUTER MODELLING, ANIMATION AND VISUALISATION
Status:	Definitive
Code:	7053COMP (103312)
Version Start Date:	01-08-2011
Owning School/Faculty:	Computing and Mathematical Sciences
Teaching School/Faculty:	Computing and Mathematical Sciences

TeamMarkowLeaderStephen TangY

Academic Level:	FHEQ7	Credit Value:	30.00	Total Delivered Hours:	72.00
Total Learning Hours:	300	Private Study:	228		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	24.000
Practical	48.000

Grading Basis: 40 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Artefacts	AS1	Individual Project involving 2D and 3D modelling and visual effects production and presentation.	40.0	
Artefacts	AS2	Group work covers: project using a 3D animation software with compositing of all the effects learned in the module.	60.0	

Aims

This module will explore computer animation and visualisation techniques including: 2D and 3D, modelling, rendering, animation, special visual effects, interactive devices, procedural animation, various motion control and deformation techniques,

techniques for animation of natural phenomena (particle systems, flocking, plant growth....), collision detection and animation systems.

Learning Outcomes

After completing the module the student should be able to:

- 1 Explain various animation and visualisation techniques and select appropriate algorithms to generate motion and visual effects for 2D and 3D animated sequences.
- 2 Produce 3D models using appropriate tools and techniques.
- 3 Use 3D Modelling and Animation software tools (for example 3DSMax, Maya or Blender) to produce advanced motion and visual effects for an animated sequence.
- 4 Implement advanced animation and visualisation techniques using scripting language.
- 5 Report with appropriate documentation the stages and techniques applied for a given computer animation and visualisation product.

5

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Individual Project	2	5	
Group Project	1	3	4

Outline Syllabus

Computer Animation: Background and History Principle of Animation (2D, 3D Animation) Computer Animation Software, Animation ans Visualisation Hardware Colour Science and Colour Models - RGB, LAB, CMYK, graphical representation. Image Quality - colours, aliasing, dithering. Animation Delivery Mechanisms: Flip-book, Cell, Object-orientated, Path-based and Tweened Animations Story-Boarding, scene composition and rendering Real-time rendering, Animation languages - scripting 3D Modelling: modelling: Three-Dimensional Co-ordinates; Polygon Model characteristics, data structure; Solid Models - contructive solid geometry; Spline surfaces - Bezier, NURBS, tools, methods 3D effects: shading, illumination, texturing, ... Key-Framing /Track-based Animation Motion specification: direct, goal directed, kinematics and dynamics, control hierarchy. Physically-based animation Character animation: Character development and modelling, Principles of character animation, 3 Using IK and FK, Pose to pose animation. Advanced and Emergent Behavioural Animation: for example-Particle and flocks, plant growth, Cloth and hair animation

Procedural Method: for example-Kinematic, Rigid Body Animation...

Learning Activities

Lectures incorporating demonstrations and discussion will be followed by tutor-led sessions. These will be supported by practical hands-on work in the laboratory.

References

Course Material	Book
Author	El Rhalibi, A. and Shen, Y.
Publishing Year	2004
Title	Animation :Berkshire Encyclopedia of Human-Computer
	Interaction.
Subtitle	Volume 1. p. 13-17
Edition	
Publisher	Berkshire Publishing Group
ISBN	

Course Material	Book
Author	Parent, R.
Publishing Year	2001
Title	Computer Animation: Algorithms and Techniques
Subtitle	
Edition	
Publisher	Morgan-Kaufmann, San Francisco
ISBN	

Course Material	Book
Author	Foley et al
Publishing Year	1990
Title	Computer Graphics: Principles & Practice
Subtitle	
Edition	2nd
Publisher	Wesley
ISBN	0201848406

Course Material	Book
Author	Griffin, H.
Publishing Year	0
Title	Animators Guide to 2D Animation
Subtitle	
Edition	
Publisher	Focal Press

ISBN	024051579X, Y
------	---------------

Course Material	Book
Author	Murdock, K.L.
Publishing Year	2007
Title	3ds Max 9 Bible
Subtitle	
Edition	
Publisher	John Wiley & Sons
ISBN	0470100893

Course Material	Book
Author	Bousquet, M.
Publishing Year	2005
Title	Model, Rig, Animate with 3DS Max 7
Subtitle	
Edition	
Publisher	New Riders
ISBN	0321321782

Course Material	Book
Author	Watt, A. Watt, M.
Publishing Year	1992
Title	Animation and Rendering Techniques Theory and Practice
Subtitle	
Edition	
Publisher	Addison -Wesley
ISBN	0201544121

Course Material	Book
Author	Kerlow, I. V.
Publishing Year	2000
Title	The Art of 3-D Computer Animation and Imaging
Subtitle	
Edition	
Publisher	Van Nostrand Reinhold
ISBN	0442018967

Notes

This module will explore computer animation and visualisation techniques including: 2D and 3D, modelling, rendering, animation, special visual effects, interactive devices, procedural animation, various motion control and deformation techniques, techniques for animation of natural phenomena (particle systems, flocking, plant growth....), collision detection and animation systems.

Part of the assessment is achieved within group-works, and the students will be

assessed individually via peer-assessment and individual conclusion in the report.