Liverpool John Moores University

Title:	Advanced Structural Integrity
Status:	Definitive
Code:	7063ENG (119376)
Version Start Date:	01-08-2012
Owning School/Faculty:	Engineering
Teaching School/Faculty:	Engineering

Team	emplid	Leader
Gareth Bradley		Y

Academic Level:	FHEQ7	Credit Value:	10.00	Total Delivered Hours:	43.00
Total Learning Hours:	100	Private Study:	57		

Delivery Options

Course typically offered: Semester 2

Component	Contact Hours
Lecture	24.000
Practical	4.000
Tutorial	12.000

Grading Basis: 50 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	AS1		70.0	3.00
Report	AS2		15.0	
Report	AS3		15.0	

Aims

To have a thorough understanding of the causes and effects of structural integrity issues with respect to a range of structural engineering materials and their associated manufacturing processes.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically evaluate the main factors influencing fatigue in structural engineering (metals, polymers, ceramics and composites) materials.
- 2 Critically evaluate the affects of manufacturing processes, e.g. machining and welding, on the structural and surface integrity of materials.
- 3 Apply the concepts of damage tolerance and how to apply this with respect to design criteria.
- 4 Apply the concepts of stress and strain life analysis with respect to HCF and LCF and how to apply this with respect to design criteria.
- 5 Design against fatigue, fracture and creep.
- 6 Apply advanced fracture mechanics concepts to the determination of structural integrity

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Examination	1	2	3	4	5	6
Fracture mechanics/fatigue lab	1	2	3			
Finite element analysis	3	6				

Outline Syllabus

Review of linear elastic fracture mechanics concepts.

Elastic-plastic fracture mechanics, J Integral, effects of constraint, testing of materials.

Finite element analysis of fracture, crack tip elements, determination of K and J. Overview of the concept of fatigue crack growth including crack initiation, stable crack growth unstable crack growth.

High cycle fatigue and S-N testing and low cycle fatigue and ϵ -N testing. Damage tolerance testing.

Fatigue properties of structural engineering materials (metals, plastics, ceramics and composites).

Designing against fatigue and fracture.

Creep of engineering materials (metals, ceramics and plastics) and testing methods Creep of metal materials at higher temperatures, data interpretation and modelling

Learning Activities

A series of lectures supported by tutorials, practical work and group exercises.

References

Course Material	Book
Author	Crawford, RJ
Publishing Year	998
Title	Plastics Engineering
Subtitle	
Edition	3rd
Publisher	Butterworth-Heinemann
ISBN	978-0-7506-3764-0

Course Material	Book
Author	Green, DJ
Publishing Year	1998
Title	An introduction to the mechanical properties of ceramics
Subtitle	
Edition	
Publisher	Cambridge
ISBN	0-521-59913-X

Course Material	Book
Author	Hull, D; Clyne, TW
Publishing Year	1996
Title	An Introduction to Composite Materials
Subtitle	
Edition	2nd
Publisher	Cambridge
ISBN	0 521 38855 4

Course Material	Book
Author	Janssen, M; Zuidema, J; Wanhill, RJH
Publishing Year	2004
Title	Fracture Mechanics
Subtitle	
Edition	2nd
Publisher	Taylor and Francis
ISBN	978-0-4153-4622-1

Course Material	Book
Author	Polmear, I
Publishing Year	2006
Title	Light Alloys
Subtitle	
Edition	4th
Publisher	Butterworth-Heinemann
ISBN	0 7506 6371 5

Course Material	Book
Author	Suresh, S

Fatigue of Materials
2nd
Cambridge University Press
9780521578479
_

Notes

This module builds on the knowledge gained from level 6 Materials and Structural Integrity module (or equivalent) and will deliver engineering students who have a indepth understanding of structural integrity issues and can subsequently make informed choices with regards to material selection and design.