Liverpool John Moores University

Title: Dynamic Systems Simulation

Status: Definitive

Code: **7065ENG** (119378)

Version Start Date: 01-08-2016

Owning School/Faculty: Electronics and Electrical Engineering Teaching School/Faculty: Electronics and Electrical Engineering

Team	Leader
Dingli Yu	Υ

Academic Credit Total

Level: FHEQ7 Value: 10 Delivered 24

Hours:

Total Private

Learning 100 Study: 76

Hours:

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours	
Lecture	12	
Practical	12	

Grading Basis: 50 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1		50	
Report	AS2		50	

Aims

To develop Matlab programming for dynamic systems simulation.

To be able to build a system model and simulate the system using Simulink.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically apply numerical methods for solving ODEs.
- 2 Graphically build simulation models of dynamic systems with Simulink.
- 3 Apply Matlab and Simulink to simulate dynamic systems.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Individual report 1 3

Individual report 2 3

Outline Syllabus

Introduction to simulation and dynamic system modelling. Numerical methods: Euler method, Runge-Kutta method.

Introduction of Matlab: matrix operations, plots, etc.

Matlab programming: loops, functions, conditional statements, etc.

Matlab functions for control systems and signal processing.

Introduction to Simulink: real time and iteration number, sample times, Building Simulink models based on differential equations. Simulation of dynamic systems by calling Simulink model. Discrete time simulations using Simulink.

Learning Activities

Lectures supported by handouts.

Practical sessions using software packages (MATLAB, Simulink and toolboxes). Individual student reports are required for the coursework.

Notes

This level 7 module enables a student to learn dynamic system simulation and simulate engineering systems using MATLAB/Simulink.