Liverpool John Moores University

Title:	FORMULATION AND DRUG DELIVERY		
Status:	Definitive		
Code:	7106PHASCI (123668)		
Version Start Date:	01-08-2021		
Owning School/Faculty:	Pharmacy & Biomolecular Sciences		
Teaching School/Faculty:	Pharmacy & Biomolecular Sciences		

Team	Leader
Imran Saleem	Y
Iftikhar Khan	
Sarah Gordon	
Matthew Roberts	
Elsie Gaskell	
Gillian Hutcheon	

Academic Level:	FHEQ7	Credit Value:	30	Total Delivered Hours:	49
Total Learning Hours:	300	Private Study:	251		

Delivery Options Course typically offered: Semester 2

Component	Contact Hours
Lecture	20
Practical	18
Workshop	8

Grading Basis: 50 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	CW1	The assignment will be based on the group project to design, produce and evaluate a delivery system for an assigned API. The assignment will comprise: (1) an individual written short essay for 20% of marks and (2) a group presentation (20%)	40	

Category	Short Description	Description	Weighting (%)	Exam Duration
Exam	EX1	Written exam comprising long answer (essay) questions	60	3

Aims

To provide students with knowledge and skills to master the principles of pharmaceutical formulation and advanced drug delivery methods.

Learning Outcomes

After completing the module the student should be able to:

- 1 Demonstrate expertise in applying the principles of pharmaceutical formulation in the design of advanced drug delivery systems
- 2 Formulate and evaluate a pharmaceutical delivery system.
- 3 Display mastery of interpreting complex information and data in the evaluation of advanced drug systems

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Mini project	1	2	3
exam	1	3	

Outline Syllabus

Introduction to the basic components of formulation, delivery systems (nanoparticles, tablets, capsules, etc.) and routes of delivery (oral, buccal, parenteral, pulmonary, nasal, topical, transdermal).

Immediate and modified release systems: excipients and polymers; immediate release formulations; modified release formulations; oral and buccal delivery; fast disintegrating tablets and enteric coatings etc; Paediatric delivery.

Nanoformulation; nanomedicines; biodegradable polymers; polymeric micro/nanoparticles; lipid-based nanoparticles; parenteral and pulmonary delivery; targeted delivery; cancer therapy.

Challenges in biopharmaceutical delivery: proteins, vaccines, genes; biomolecule stability, bioavailability and first pass metabolism; solutions, nanoparticles and lipid carriers; Routes of delivery; insulin and vaccine delivery.

Special topics and future developments supported by recent literature. For example; clays for drug delivery, wound healing, nanoparticles for medical diagnosis.

Mini-project: Group project to design, produce and evaluate a delivery system for an assigned API.

Learning Activities

Lectures covering each topic within the module

Practical sessions giving students first-hand experience of relevant formulation principles

Workshops to support reviews of current literature, experimental design and analysis of data generated during practical sessions

Notes

Practical sessions will involve students developing hands-on experience of formulating and evaluating delivery systems.

Exam will assess students understanding of the principles through data interpretation and problem solving questions