Liverpool John Moores University

Title:	Pavement, Highways and Transport Engineering
Status:	Definitive
Code:	7107BEUG (120605)
Version Start Date:	01-08-2016
Owning School/Faculty:	Built Environment
Teaching School/Faculty:	Computer Science

Team	Leader
Yue Huang	Y
Hassan Al Nageim	
Felicite Ruddock	

Academic Level:	FHEQ7	Credit Value:	20	Total Delivered Hours:	57
Total Learning Hours:	200	Private Study:	143		

Delivery Options

Course typically offered: Standard Year Long

Component	Contact Hours
Lecture	27
Tutorial	18
Workshop	9

Grading Basis: 50 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	Report	report and presentation	40	
Exam	Exam	exam	60	3

Aims

To develop knowledge and critical evaluation in highways and road pavement design.

To appreciate the demands, and challenges in providing and maintaining sustainable road transport infrastructure.

Introduce fundamentals of traffic flow theory, transport planning and associated social and environmental elements such as road safety, air pollution.

Learning Outcomes

After completing the module the student should be able to:

- 1 Analyse the key elements in highway geometric design, constraints and the balance between safety, cost and environment
- 2 Evaluate contemporary approaches for road pavement design, materials and performance evaluation
- 3 Critically analyse and evaluate the impact of sustainability with reference to highways engineering and operations
- 4 Develop a critical appreciation of the theory that underpins the technical basis of the management, design and control of transport infrastructure

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Report and presentation	2	3		
Examination	1	2	3	4

Outline Syllabus

- 1. Design speed
- 2. Horizontal and Vertical alignment
- 3. Pavement materials and design principles
- 4. Road pavement maintenance and performance evaluation
- 5. Principles of junction design, capacity assessment
- 6. Introduction to transport modelling
- 7. Sustainable construction in road environment
- 8. Road materials recycling and life cycle analysis
- 9. Introduction to road safety
- 10. Introduction to air pollution

Learning Activities

Lectures, tutorials and workshops.

Notes

This module aims to develop knowledge and critical evaluation in highways and road pavement design and to appreciate the demands, and challenges in providing and maintaining sustainable road transport infrastructure.