

# **Exercise Metabolism**

# **Module Information**

2022.01, Approved

### **Summary Information**

| Module Code         | 7143SPOSCI                  |
|---------------------|-----------------------------|
| Formal Module Title | Exercise Metabolism         |
| Owning School       | Sport and Exercise Sciences |
| Career              | Postgraduate Taught         |
| Credits             | 20                          |
| Academic level      | FHEQ Level 7                |
| Grading Schema      | 50                          |

#### Teaching Responsibility

| LJMU Schools involved in Delivery |  |
|-----------------------------------|--|
| Sport and Exercise Sciences       |  |

### **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 24    |
| Practical            | 48    |

## Module Offering(s)

| Display Name | Location | Start Month | Duration Number Duration Unit |
|--------------|----------|-------------|-------------------------------|
| JAN-CTY      | СТҮ      | January     | 12 Weeks                      |

## Aims and Outcomes

Aims

This module aims to increase students' understanding of the regulation of the metabolic processes by which energy is stored and metabolised during subsequent exercise as well as examining the molecular mechanisms underpinning muscle adaptation to training and disuse. Specific attention will be placed upon the effects of nutrition on modulating the above processes. Additionally, students will be introduced to a range of physiological tests and laboratory techniques that sports scientists may use to assist with nutritional interventions for elite athletes and interpret research papers, respectively.

#### After completing the module the student should be able to:

#### Learning Outcomes

| Code | Number | Description                                                                                                                                                                                                        |
|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MLO1 | 1      | Critically evaluate the regulatory steps in the metabolic pathways of carbohydrate, lipid and amino acid metabolism                                                                                                |
| MLO2 | 2      | Critically evaluate the regulatory mechanisms underpinning energy production during endurance<br>and high-intensity exercise and the influence of training and nutritional status on modulating<br>these responses |
| MLO3 | 3      | Critically evaluate the molecular mechanisms underpinning muscle adaptation to endurance and resistance exercise training                                                                                          |

## **Module Content**

| Outline Syllabus       | Week 1 Overview of Exercise MetabolismWeek 2 Carbohydrate MetabolismWeek 3 Lipid<br>MetabolismWeek 4 Amino Acid MetabolismWeek 5 Nutrient Effects on Exercise<br>MetabolismWeek 6 Training Effects on Exercise MetabolismWeek 7 Endurance Exercise<br>MetabolismWeek 8 High-Intensity Exercise MetabolismWeek 9 Molecular Exercise Metabolism<br>Week 10 Molecular Mechanisms of Endurance Training AdaptationWeek 11 Molecular<br>Mechanisms of Strength Training AdaptationWeek 12 Molecular Mechanisms of Concurrent<br>Training Adaptation                                                                                                                                                                                                                                                                                  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Overview        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Additional Information | This module aims to increase the students understanding of the regulation of the metabolic processes by which muscles are provided with energy during exercise as well as examining the molecular mechanisms underpinning muscle adaptation to training. Prior to intervention with nutritional strategies, it is essential to understand how muscle metabolises and stores fuel. Special attention will be given to carbohydrate and fat metabolism and the influence of exercise intensity, duration, training status and nutrient availability on the regulation of energy metabolism will also be studied. Students will also undertake a series of laboratory practicals that are considered essential to the field of exercise physiology and metabolism e.g. VO2max, lactate threshold, FatMAX, indirect calorimetry etc |

### Assessments

| Assignment Category | Assessment Name               | Weight | Exam/Test Length (hours) | Module Learning<br>Outcome Mapping |
|---------------------|-------------------------------|--------|--------------------------|------------------------------------|
| Report              | Laboratory practical & report | 50     | 0                        | MLO1                               |
| Centralised Exam    | Short answer exam             | 50     | 2                        | MLO1, MLO2,<br>MLO3                |

### **Module Contacts**

Module Leader

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
| James Morton | Yes                      | N/A       |

#### Partner Module Team

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
| contact Name | Applies to all olienings | Onenings  |